Reciprocal Structures

A reciprocal frame is a self-supported three-dimensional structure made up of three or more sloping rods, which form a closed circuit. The inner end of each rod rests on and is supported by its adjacent rod, gaining stability as the last rod is placed over the first one in a mutually supporting manner.

These rods form self-similar and highly symmetric patterns, capable of creating a vast architectural space as a narrative and aesthetic expression of the frame. The appearance of the entire structure is determined by the geometric parameters of each individual unit and the connections between the units.

dip3

Precedent image

Reciprocal frame (RF) principles have been around for many centuries, proving themselves versatile, efficient and resistant. They were present in the neolithic pit dwelling, the Eskimo tent, Indian tepee and the Hogan dwellings where mutually supporting beams form a rigid skeleton. The Hogan dwellings consist of a larger number of single RFs being supported by a larger diameter RF structure. Later development of the structural form can be seen in the timber floor grillages of larger medieval buildings where they were used for spanning spaces wider than the length of available beams.

fig11

Eskimo tent

Leonardo da Vinci explored two forms of reciprocal structure: a bridge and a dome. His work was commissioned by the Borgia family, with the purpose of designing light and strong structures which could be built and taken down quickly. This was to aid them in their constant quest for dominance over the Medici family in Renaissance Italy. The bridge would have been used for crossing rivers, and the dome could have functioned as a military camp.

Screen Shot 2014-11-03 at 17.21.33

Leonardo da Vinci’s sketchbook

Understanding the geometry of the reciprocal frame and the parameters that define it is essential in order to design and construct larger systems. The parameters that define RF units with regular polygonal and circular geometry are the following:

– n: number of beams;

– R: radius through the outer supports;

– r: radius through beam intersection points;

– H: vertical rise from the outer supports to the beam intersection points;

– h: vertical spacing of the centerlines of the beams at their intersection points;

– L: length of the beams on the slope;

– l: plan projection of the length of the beam.

16.10.14 Systems 6Manipulating the length (L), height (H) and radius of the circumscribed circle of the three intersection points (r), the geometry of the structure changes as follows:

-increasing the length of the beams reduces the height of the entire structure;

-increasing the height of the RF structures reduces the span of the overall structure;

-increasing the radius of the circumscribed circle reduces the span of the overall structure.

16.10.14 Systems

Each RF member is subject to forces of compression, bending moments and shear forces as well as axial forces. The members transmit the vertical forces of their own weight and any imposed loads through compression in each member. These forces must be resisted at the perimeter supports. In addition, the lower part of the beam, between the outer support and the point where the beam is supporting the adjacent one, is in compression whereas tension forces will occur in the upper part of the beam.

rendered

Rhino model

Having investigated various morphologies through digital and especially physical modelling, I have started creating a dome-like structure which, through an irregular reciprocal unit, folds into a super-dome. Repeating the process, I arrived at a spiralling domical structure which I have then panelled, using the same reciprocal morphology. This lends a recursive effect to the entire structure.

IMG_5964 IMG_5987 IMG_5996 20141110_091903 20141110_050054

Progression of the structure in physical form

4 comments
  1. nselikoff said:

    If you haven’t come across it already, check out the work of dutch artist Rinus Roelofs, who has done a lot of experimentation with “reciprocal structures”: http://www.rinusroelofs.nl

  2. Your reciprocal structures are very interesting!
    We have been investigating reciprocal / weaving techniques in paper and bamboo in Italy
    new balls
    it would be interesting to compare notes…

  3. Thanks Alison, your work looks fascinating. I am amazed how reciprocal patterns can lead into minimal surfaces!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: