Diploma Studio 10 at Westminster University School of Architecture
Category: animation
HORTICULTURAL HERITAGE, INHABITED
Plant rich diets & agroforestry are methods to reverse global warming from Drawdown. This project returns Plant Trade heritage to Docklands through Wardian Terrariums, self-sustaining microclimates that aid plant growth from all hemispheres. Fruit, veg & herbs are home grown within high-rise greenspaces. Inspired by the photosynthetic properties of coral, the buildings plants grow symbiotically with controlled levels of sunlight, energy, temperature & moisture.
SITE: DOCKLANDS, LONDON
Rotherhithe has been selected as the site for brief 1, with Beckton as the site for brief 2. Both sites are located in Docklands.
Rotherhithe, South west London, is currently under planning with proposals to build a multi-use housing development around the gasometer. In 2019, the Rotherhithe Gas Holder company opened a temporary Hub to receive resident feedback for the planned development. Lots of feedback was in relation to the heritage of Rotherhithe, with residents requesting the history of the site is maintained and celebrated.
The name ‘Rotherhithe’ derived from the Latin translation of ‘Landing place’, as it was part of the Docklands trade, with raw materials and goods being imported to the site via ships from around the world. The proposed artefact re-creates native climates from all hemispheres for native & imported plants that grow herbs, fruits, spices and botanicals.
Rotherhithe Warehouse, 1960
THE CLIMATE CRISIS: CORAL REGENERATION
The bleaching of the Great Barrier Reef in 2016 and 2017 killed around 50% marine life. Rising ocean temperatures caused by global warming is the biggest contributor to ocean acidification & water pollution.
It is estimated that 60% of the world’s coral reefs will be lost by 2030, and 90% by 2050. Corals are especially susceptible to bleaching when stressed, which causes loss of the coral’s zooxanthellae & algae.
Bleached corals are stark white and may die if new Symbiodinium cells cannot be formed. Common causes of bleaching and coral death include pollution, warm water temperatures, increased ocean acidification, sedimentation, and eutrophication.
Taking inspiration from the death of a coral skeleton after bleaching, the artefact is based on a replicated ‘mesh’ aspect of strong and resilliant branching coral.
DIGITAL EXPERIMENTATION
Taking the resillience of a coral mesh, I have experimented on Grasshopper with different methods of creating the initial design concepts of my artefact. The mesh will act as a supportive shell, with plants integrated throughout.
MESH TO STRUCTURE
The Grasshopper experiments are transformed into various containers based on the concept of Wardian Cases, providing various moisture, light and temperature conditions for each individual plant.
Brief 2:
HERITAGE, HORTICULTURE & HYPERBUILDS
Reviving the Docklands Plant Trade heritage through Wardian Cases
This project celebrates our scientific movements away from the industrial era through our ability to re-create self-sustaining climates for plants. The discovery of the Wardian Case- the original terrarium, demonstrates a simple yet powerful ability to re-create its own self-sustaining climate, allowing biodiversity to grow & thrive. Docklands was the largest importer of raw materials including plants, herbs, fruits, veg & many more in the world.
‘Bio’, with the latin meaning ‘organic life’, is becoming increasingly considered through trends such as biophilia, biomimicry and biomorphism. The Biosphere (Earth), must have such trends prioritised at the forefront of design in order to help keep our planet inhabitable. Drawdown: The most comprehensive plan ever proposed to reverse global warming, is an intricately researched document on our top 100 most effective methods of reducing and reversing the climate crisis The document covers all issues concerning global warming from family planning/population control to refridgeration, plant-based diets, and organic material usage. Some of the most effective topics have been applied to my proposal are:
• Regenerative farming • Plant rich diets • Educating girls • Solar energy • Mass organic food production
The fully self-sustaining multi-functional arcological hyper building incorprates public spaces such as horticultural education, plant nurseries & labs that breed native & endangered plants, & informative public exhibitions, along with residential sectors that offer organic food farming inspired by the Wardian Case Terrariums.
Drawdown summarises ways to help reverse global warming. Regenerative farming, plant rich diets, biodiversity & permacultire are some Drawdown methods that I have incorprated into my project. Below is a full list of the methods I have included, and individual summaries of why these methods have been incorprated into my residential biodiverse tower.
Regarding my previous entries, it can be difficult to see how any of this has to do with architecture. In fact I know a few people who think studying fractals is pointless.
Admittedly I often struggle to explain to people what fractals are, let alone how they can influence the way buildings look. However, I believe that this post really sheds light on how these kinds of studies may directlyinfluence and enhance our understanding (and perhaps even the future) of our built environment.
On a separate note, I heard that a member of the architectural academia said “forget biomimicry, it doesn’t work.”
Firstly, I’m pretty sure Frei Otto would be rolling over in his grave.
Secondly, if someone thinks that biomimicry is useless, it’s because they don’t really understand what biomimicry is. And I think the same can be said regarding the study of fractals. They are closely related fields of study, and I wholeheartedly believe they are fertile grounds for architectural marvels to come.
7.0 Introduction to Shells
As far as classification goes, shells generally fall under the category of two-dimensional shapes. They are defined by a curved surface, where the material is thin in the direction perpendicular to the surface. However, assigning a dimension to certain shells can be tricky, since it kinda depends on how zoomed in you are.
A strainer is a good example of this – a two-dimensional gridshell. But if you zoom in, it is comprised of a series of woven, one-dimensional wires. And if you zoom in even further, you see that each wire is of course comprised of a certain volume of metal.
This is a property shared with many fractals, where their dimension can appear different depending on the level of magnification. And while there’s an infinite variety of possible shells, they are (for the most part) categorizable.
7.1 – Single Curved Surfaces
Analytic geometry is created in relation to Cartesian planes, using mathematical equations and a coordinate systems. Synthetic geometry is essentially free-form geometry (that isn’t defined by coordinates or equations), with the use of a variety of curves called splines. The following shapes were created via Synthetic geometry, where we’re calling our splines ‘u’ and ‘v.’
Uniclastic: Barrel Vault (Cylindrical paraboloid)
These curves highlight each dimension of the two-dimensional surface. In this case only one of the two ‘curves’ is actually curved, making this shape developable. This means that if, for example, it was made of paper, you could flatten it completely.
Uniclastic: Conoid (Conical paraboloid)
In this case, one of them grows in length, but the other still remains straight. Since one of the dimensions remains straight, it’s still a single curved surface – capable of being flattened without changing the area. Singly curved surfaced may also be referred to as uniclastic or monoclastic.
7.2 – Double Curved Surfaces
These can be classified as synclastic or anticlastic, and are non-developable surfaces. If made of paper, you could not flatten them without tearing, folding or crumpling them.
Synclastic: Dome (Elliptic paraboloid)
In this case, both curves happen to be identical, but what’s important is that both dimensions are curving in the same direction. In this orientation, the dome is also under compression everywhere.
The surface of the earth is double curved, synclastic – non-developable. “The surface of a sphere cannot be represented on a plane without distortion,” a topic explored by Michael Stevens: https://www.youtube.com/watch?v=2lR7s1Y6Zig
Anticlastic: Saddle (Hyperbolic paraboloid)
This one was formed by non-uniformly sweeping a convex parabola along a concave parabola. It’s internal structure will behave differently, depending on the curvature of the shell relative to the shape. Roof shells have compressive stresses along the convex curvature, and tensile stress along the concave curvature.
Kellogg’s potato and wheat-based stackable snack
Here is an example of a beautiful marriage of tensile and compressive potato and wheat-based anticlastic forces. Although I hear that Pringle cans are diabolically heinous to recycle, so they are the enemy.
Structural Behaviour of Basic Shells [Source: IL 10 – Institute for Lightweight Structures and Conceptual Design]
7.3 – Translation vs Revolution
In terms of synthetic geometry, there’s more than one approach to generating anticlastic curvature:
Hyperbolic Paraboloid: Straight line sweep variation
This shape was achieved by sweeping a straight line over a straight path at one end, and another straight path at the other. This will work as long as both rails are not parallel. Although I find this shape perplexing; it’s double curvature that you can create with straight lines, yet non-developable, and I can’t explain it..
Ruled Surface & Surface of Revolution (Circular Hyperboloid)
The ruled surface was created by sliding a plane curve (a straight line) along another plane curve (a circle), while keeping the angle between them constant. The surfaces of revolution was simply made by revolving a plane curve around an axis. (Surface of translation also exist, and are similar to ruled surfaces, only the orientation of the curves is kept constant instead of the angle.)
Hyperboloid Generation [Source:Wikipedia]
The hyperboloid has been a popular design choice for (especially nuclear cooling) towers. It has excellent tensile and compressive properties, and can be built with straight members. This makes it relatively cheap and easy to fabricate relative to it’s size and performance.
These are singly curved curves, although that does sound confusing. A simple way to understand what geodesic curves are, is to give them a width. As previously explored, we know that curves can inhabit, and fill, two-dimensional space. However, you can’t really observe the twists and turns of a shape that has no thickness.
Conic Plank Lines (Source: The Geometry of Bending)
A ribbon is essentially a straight line with thickness, and when used to follow the curvature of a surface (as seen above), the result is a plank line. The term ‘plank line’ can be defined as a line with an given width (like a plank of wood) that passes over a surface and does not curve in the tangential plane, and whose width is always tangential to the surface.
Since one-dimensional curves do have an orientation in digital modeling, geodesic curves can be described as the one-dimensional counterpart to plank lines, and can benefit from the same definition.
For simplicity, here’s a basic grid set up on a flat plane:
Basic geodesic curves on a plane
We start by defining two points anywhere along the edge of the surface. Then we find the geodesic curve that joins the pair. Of course it’s trivial in this case, since we’re dealing with a flat surface, but bear with me.
Initial set of curves
We can keep adding pairs of points along the edge. In this case they’re kept evenly spaced and uncrossing for the sake of a cleaner grid.
Addition of secondary set of curves
After that, it’s simply a matter of playing with density, as well as adding an additional set of antagonistic curves. For practicality, each set share the same set of base points.
Grid with independent sets
He’s an example of a grid where each set has their own set of anchors. While this does show the flexibility of a grid, I think it’s far more advantageous for them to share the same base points.
8.2 – Basic Gridshells
The same principle is then applied to a series of surfaces with varied types of curvature.
Uniclastic: Barrel Vault Geodesic Gridshell
First comes the shell (a barrel vault in this case), then comes the grid. The symmetrical nature of this surface translates to a pretty regular (and also symmetrical) gridshell. The use of geodesic curves means that these gridshells can be fabricated using completely straight material, that only necessitate single curvature.
Uniclastic: Conoid Geodesic Gridshell
The same grid used on a conical surface starts to reveal gradual shifts in the geometry’s spacing. The curves always search for the path of least resistance in terms of bending.
Synclastic: Dome Geodesic Gridshell
This case illustrates the nature of geodesic curves quite well. The dome was free-formed with a relatively high degree of curvature. A small change in the location of each anchor point translates to a large change in curvature between them. Each curve looks for the shortest path between each pair (without leaving the surface), but only has access to single curvature.
Anticlastic: Saddle Geodesic Gridshell
Structurally speaking, things get much more interesting with anticlastic curvature. As previously stated, each member will behave differently based on their relative curvature and orientation in relation to the surface. Depending on their location on a gridshell, plank lines can act partly in compression and partly in tension.
On another note:
While geodesic curves make it far more practical to fabricate shells, they are not a strict requirement. Using non-geodesic curves just means more time, money, and effort must go into the fabrication of each component. Furthermore, there’s no reason why you can’t use alternate grid patterns. In fact, you could use any pattern under the sun – any motif your heart desires (even tessellated puppies.)
Alternate Gridshell Patterns [Source: IL 10 – Institute for Lightweight Structures and Conceptual Design]
Here are just a few of the endless possible pattern. They all have their advantages and disadvantages in terms of fabrication, as well as structural potential.
Biosphere Environment Museum – Canada
Gridshells with large amounts of triangulation, such as Buckminster Fuller’s geodesic spheres, typically perform incredibly well structurally. These structure are also highly efficient to manufacture, as their geometry is extremely repetitive.
Centre Pompidou-Metz – France
Gridshells with highly irregular geometry are far more challenging to fabricate. In this case, each and every piece had to be custom made to shape; I imagine it must have costed a lot of money, and been a logistical nightmare. Although it is an exceptionally stunning piece of architecture (and a magnificent feat of engineering.)
8.3 – Gridshell Construction
In our case, building these shells is simply a matter of converting the geodesic curves into planks lines.
Hyperbolic Paraboloid: Straight Line Sweep Variation With Rotating Plank Line Grid
The whole point of using them in the first place is so that we can make them out of straight material that don’t necessitate double curvature. This example is rotating so the shape is easier to understand. It’s grid is also rotating to demonstrate the ease at which you can play with the geometry.
Hyperbolic Paraboloid: Flattened Plank Lines With Junctions
This is what you get by taking those plank lines and laying them flat. In this case both sets are the same because the shell happens to the identicall when flipped. Being able to use straight material means far less labour and waste, which translates to faster, and or cheaper, fabrication.
An especially crucial aspect of gridshells is the bracing. Without support in the form of tension ties, cable ties, ring beams, anchors etc., many of these shells can lay flat. This in and of itself is pretty interesting and does lends itself to unique construction challenges and opportunities. This isn’t always the case though, since sometimes it’s the geometry of the joints holding the shape together (like the geodesic spheres.) Sometimes the member are pre-bent (like Pompidou-Metz.) Although pre-bending the timber kinda strikes me as cheating thought.. As if it’s not a genuine, bona fide gridshell.
Toledo Gridshell 2.0. Construction Process [source: Timber gridshells – Numerical simulation, design and construction of a full scale structure]
This is one of the original build method, where the gridshell is assembled flat, lifted into shape, then locked into place.
9.0 Form Finding
Having studied the basics makes exploring increasingly elaborate geometry more intuitive. In principal, most of the shells we’ve looked are known to perform well structurally, but there are strategies we can use to focus specifically on performance optimization.
9.0 – Minimal Surfaces
These are surfaces that are locally area-minimizing – surfaces that have the smallest possible area for a defined boundary. They necessarily have zero mean curvature, i.e. the sum of the principal curvatures at each point is zero. Soap bubbles are a great example of this phenomenon.
Hyperbolic Paraboloid Soap Bubble [Source: Serfio Musmeci’s “Froms With No Name” and “Anti-Polyhedrons”]Soap film inherently forms shapes with the least amount of area needed to occupy space – that minimize the amount of material needed to create an enclosure. Surface tension has physical properties that naturally relax the surface’s curvature.
Kangaroo2 Physics: Surface Tension Simulation
We can simulate surface tension by using a network of curves derived from a given shape. Applying varies material properties to the mesh results in a shape that can behaves like stretchy fabric or soap. Reducing the rest length of each of these curves (while keeping the edges anchored) makes them pull on all of their neighbours, resulting in a locally minimal surface.
Here are a few more examples of minimal surfaces you can generate using different frames (although I’d like stress that the possibilities are extremely infinite.) The first and last iterations may or may not count, depending on which of the many definitions of minimal surfaces you use, since they deal with pressure. You can read about it in much greater detail here: https://tinyurl.com/ya4jfqb2
The Eden Project – United Kingdom
Here we have one of the most popular examples of minimal surface geometry in architecture. The shapes of these domes were derived from a series of studies using clustered soap bubbles. The result is a series of enormous shells built with an impressively small amount of material.
Triply periodic minimal surfaces are also a pretty cool thing (surfaces that have a crystalline structure – that tessellate in three dimensions):
Another powerful method of form finding has been to let gravity dictate the shapes of structures. In physics and geometry, catenary (derived from the Latin word for chain) curves are found by letting a chain, rope or cable, that has been anchored at both end, hang under its own weight. They look similar to parabolic curves, but perform differently.
Kangaroo2 Physics: Catenary Model Simulation
A net shown here in magenta has been anchored by the corners, then draped under simulated gravity. This creates a network of hanging curves that, when converted into a surface, and mirrored, ultimately forms a catenary shell. This geometry can be used to generate a gridshell that performs exceptionally well under compression, as long as the edges are reinforced and the corners are braced.
While I would be remiss to not mention Antoni Gaudí on the subject of catenary structure, his work doesn’t particularly fall under the category of gridshells. Instead I will proceed to gawk over some of the stunning work by Frei Otto.
Of course his work explored a great deal more than just catenary structures, but he is revered for his beautiful work on gridshells. He, along with the Institute for Lightweight Structures, have truly been pioneers on the front of theoretical structural engineering.
9.3 – Biomimicry in Architecture
There are a few different terms that refer to this practice, including biomimetics, bionomics or bionics. In principle they are all more or less the same thing; the practical application of discoveries derived from the study of the natural world (i.e. anything that was not caused or made by humans.) In a way, this is the fundamental essence of the scientific method: to learn by observation.
Example of Biomimicry
Frei Otto is a fine example of ecological literacy at its finest. A profound curiosity of the natural world greatly informed his understanding of structural technology. This was all nourished by countless inquisitive and playful investigations into the realm of physics and biology. He even wrote a series of books on the way that the morphology of bird skulls and spiderwebs could be applied to architecture called Biology and Building. His ‘IL‘ series also highlights a deep admiration of the natural world.
Of course he’s the not the only architect renown their fascination of the universe and its secrets; Buckminster Fuller and Antoni Gaudí were also strong proponents of biomimicry, although they probably didn’t use the term (nor is the term important.)
Gaudí’s studies of nature translated into his use of ruled geometrical forms such as hyperbolic paraboloids, hyperboloids, helicoids etc. He suggested that there is no better structure than the trunk of a tree, or a human skeleton. Forms in biology tend to be both exceedingly practical and exceptionally beautiful, and Gaudí spent much of his life discovering how to adapt the language of nature to the structural forms of architecture.
Fractals were also an undisputed recurring theme in his work. This is especially apparent in his most renown piece of work, the Sagrada Familia. The varying complexity of geometry, as well as the particular richness of detail, at different scales is a property uniquely shared with fractal nature.
Antoni Gaudí and his legacy are unquestionably one of a kind, but I don’t think this is a coincidence. I believe the reality is that it is exceptionally difficult to peruse biomimicry, and especially fractal geometry, in a meaningful way in relation to architecture. For this reason there is an abundance of superficial appropriation of organic, and mathematical, structures without a fundamental understanding of their function. At its very worst, an architect’s approach comes down to: ‘I’ll say I got the structure from an animal. Everyone will buy one because of the romance of it.”
That being said, modern day engineers and architects continue to push this envelope, granted with varying levels of success. Although I believe that there is a certain level of inevitability when it comes to how architecture is influenced by natural forms. It has been said that, the more efficient structures and systems become, the more they resemble ones found in nature.
Euclid, the father of geometry, believed that nature itself was the physical manifestation of mathematical law. While this may seems like quite a striking statement, what is significant about it is the relationship between mathematics and the natural world. I like to think that this statement speaks less about the nature of the world and more about the nature of mathematics – that math is our way of expressing how the universe operates, or at least our attempt to do so. After all, Carl Sagan famously suggested that, in the event of extra terrestrial contact, we might use various universal principles and facts of mathematics and science to communicate.
The study of fractals is an intensely vast topic. So much so that I’m convinced you could easily spend several lifetimes studying them. That being said, I chose to focus specifically on single-curve geometry. But, keep in mind that I’m only really scratching the surface of what there is to explore.
4.0 Classic Space-Filling
Inspired by Georg Cantor’s research on infinity near the end of the 19th century, mathematicians were interested in finding a mapping of a one-dimensional line into two-dimensional space – a curve that will pass through through every single point in a given space.
Jeffrey Ventrella writes that “a space-filling curve can be described as a continuous mapping from a lower-dimensional space into a higher-dimensional space.” In other words, an initial one-dimensional curve is developed to increase its length and curvature – the amount of space in occupies in two dimensions. And in the mathematical world, where a curve technically has no thickness and space is infinitely vast, this can be done indefinitely.
4.1 Early Examples
In 1890, Giuseppe Peano discovered the first of what would be called space-filing curves:
4 Iterations of the Peano Curve
An initial ‘curve’ is drawn, then each element of the curve is replace by the whole thing. Here it is done four times, and it’s easy to imagine how you can keep doing this over and over again. One would think that if you kept doing this indefinitely, this one-dimensional curve would eventually fill all of two-dimensional space and become a surface. However it can’t, since it technically has no thickness. So it will be as close as you can get to a surface, without actually being a surface (I think.. I’m not that sure..)
A year later, David Hilbert followed with his slightly simpler space-filing curve:
8 Iterations of the Hilbert Curve
In 1904, Helge von Koch describes a single complex continuous curve, generated with rudimentary geometry.
7 Iterations of the Koch Curve
Around 1967, NASA physicists John Heighway, Bruce Banks, and William Harter discovered what is now commonly known as the Dragon Curve.
13 Iterations of the Dragon Curve
4.2 Later Examples
You may have noticed that some of these curves are better at filling space than others, and this is related to their dimensional measure. They fall under the category of fractals because they’re neither one-dimensional, nor two-dimensional, but sit somewhere in between. For these examples, their dimension is often defined by exactly how much space they fill when iterated infinitely.
While these are some of the earliest space-filling curves to be discovered, they are just a handful of the likely endless different variations that are possible. Jeffrey Ventrella spent over twenty-five years exploring fractal curves, and has illustrated over 200 hundred of them in his book ‘Brain-Filling Curves, A Fractal Bestiary.’ They are organised according to a taxonomy of fractal curve families, and are shown with a unique genetic code.
Incidentally, in an attempt to recreate one of the fractals I found in Jeffery Ventrella’s book, I accidentally created a slightly different fractal. As far as I’m concerned, I’ve created a new fractal and am unofficially naming it ‘Nicolino’s Quatrefoil.’ The following was created in Rhino and Grasshopper, in conjunction Anemone.
5 Iterations of Nicolino’s Quatrefoil
You can find beautifully animated space-filling curves here:
As an object, it seems perplexingly difficult to categorize. It is a single, one-dimensional, curve that is ‘bent’ in space following simple, repeating rules. Following the same logic as the original Hilbert Curve, we know that this can be done indefinitely, but this time it is transforming into a volume instead of a surface. (Ignoring the fact that it is represented with a thickness) It is a one-dimensional curve transforming into a three-dimensional volume, but is never a two-dimensional surface? As you keep iterating it, its dimension gradually increases from 1 to eventually 3, but will never, ever, ever be 2??
Nevertheless this does actually support a statement I made in my last post suggesting “…there is no ‘first’ or ‘second’ dimension. It’s a bit like pouring three cups of water into a vase and asking someone which cup is the first one. The question doesn’t even make sense…“
5.0 Avant-Garde Space-Filling
In the case of the original space-filling curve, the goal was to fill all of infinite space. However the fundamental behaviour of these curves change quite drastically when we start to play with the rules used to generate them. For starters, they do not have to be so mathematically tidy, or geometrically pure. The following curves can be subdivided infinitely, making them true space-filling curves. But, what makes them special is the ability to control the space-filling process, whereas the original space-filling curves offer little to no artistic license.
5.1 The Traveling Salesman Problem
Let’s say that we change the criteria, from passing through every single point in space, to passing only through the ones we choose. This now becomes a well documented computational problem that has immediate ‘real world’ applications.
Our figurative traveling salesman wishes to travel the country selling his goods in as many cities as he can. In order to maximize his net profit, he must make his journey as short as possible, while of course still visiting every city on his list. His best possible route becomes exponentially more challenging to work out, as even just a handful of cities can generate thousands of permutations.
There are a variety of different strategies to tackle this problem, a few of which are described here:
The result is ultimately a single curve, filling a space in a uniquely controlled fashion. This method can be used to create single-lined drawings based on points extracted from Voronoi diagrams, a topic explored by Arjan Westerdiep:
This illustration, commissioned by Bill Cook at University of Waterloo, is a solution to the Traveling Salesman Problem.
5.2 Differential Growth
If we let physics (rather than math) dictate the growth of the curve, the result becomes more organic and less controlled.
In this example Rhino is used with Grasshopper and Kangaroo 2. A curve is drawn on a plain, broken into segments, then gradually increased in length. As long as the curve is not allowed to cross itself (which is achieved here with ‘Collision Spheres’), the result is a curve that is pretty good at uniformly filling space.
The geometry doesn’t even have to be bound by a planar surface; It can be done on any two-dimensional surface (or in three-dimensions (even higher spacial dimensions I guess..)).
Additionally, Anemone can be used in conjunction with Kangaroo 2 to continuously subdivide the curve as it grows. The result is much smoother, as well as far more organic.
In the interest of creating something a little more tangible, it is possible to increase the dimension of these curves. Recording the progressive iterations of a space filling curve allow us to generate what is essentially a space-filling surface. This new surface has the unique quality of being able to fill a three-dimensional space of any shape and size, while being a single surface. It of course also shares the same qualities as its source curves, where it keep increasing in surface area (and can do so indefinitely).
Surface Unrolling Study
If you were to keep gradually (but indefinitely) increasing the area of a surface this way in a finite space, the result will be a two-dimensional surface seamlessly transforming into a three-dimensional volume.
6.1 Dragon’s Feet
Here is an example of turning the dragon curve into a space-filling surface. Each iteration is recorded and offset in depth, all of which inform the generation of a surface that loosely flows through each of them. This was again achieved with Rhino and Grasshopper.
I don’t believe this geometry has a name beyond ‘the developing dragon curve’, so I’ve called it ‘Dragon’s Feet.’
Adding a little thickness to the model allow us to 3D print it.
Unsurprisingly this can also be done with differentially grown curve. The respective difference being that this method fills a specific space in a less controlled manner.
In this case with Kangaroo 2 is used to grow a curve into the shape of a whale. Like before, each iteration is used to inform a single-surface geometry.
Iterative Steps of the Differentially Grown Whale Curve
something caught in between dimensions – on its way to becoming more.
Summary
The Wishing Well is the physical manifestation, a snap-shot, of a creature caught in between dimensions – frozen in time. It is a digital entity that has been extracted from its home in the fractured planes of the mathematical realm; a differentially grown curve in bloom, organically filling space in the material world.
The piece will be built from the bottom-up. Starting with the profile of a differentially grown curve (a squiggly line), an initial layer will be set in pieces of 2 x 4 inch wooden studs (38 x 89 millimeter profile) laid flat, and anchored to the ground. Each subsequent layer will be built upon and fixed to the last, where each new layer is a slightly smoother version than the last. 210 layers will be used to reach a height of 26 feet (8 meters). The horizontal spaces in between each of the pieces will automatically generate hand and foot holes, making the structure easily climbable. The footprint of the build will be bound to a space 32 x 32 feet.
The design may utilize two layers, inner and out, that meet at the top to increase the structural integrity for the whole build. It will be lit from within, either from the ground with spotlights or with LED strip lights following patterns along the walls.
Different Recursive Steps of a Dragon Curve
Ambition
At the Wishing Well, visitors embark on a small journey, exploring the uniquely complex geometry of the structure before them. As they approach the foot of the well, it will stand towering above them, undulating organically across the landscape. The nature of the structure’s curves beckons visitors to explore the piece’s every nook and cranny. Moreover, its stature grants a certain degree of shelter to any traveller seeking refuge from the Playa’s extreme weather conditions. The well’s shape and scale allows natural, and artificial, light to interact in curious ways with the structure throughout the day and night. The horizontal gaps between every ‘brick’ in the wall allows light to filter through each layer, which in turn casts intriguing shadows across the desert. This perforation also allows Burners to easily, and relatively safely, scale the face of the build. Visitors will have the opportunity to grant a wish by writing it down on a tag and fixing it to the well’s interior.
Philosophy
If you had one magical (paradox free) wish, to do anything you like, what would it be?
Anything can be wished for at the Wishing Well, but a wish will not come true if it is deemed too greedy. Visitors must write their wish down on a tag and fix it to the inside of the well. They must choose wisely, as they are only allowed one. Additionally, they may choose to leave a single, precious, offering. However, if the offering does not burn, it will not be accepted. Visitors will also find that they must tread lightly on other people’s wishes and offerings.
The color of the tag and offering are important as they are associated with different meanings:
► PINK – love
► RED – happiness, joy, success, good luck, passion, vitality, celebration
► YELLOW – nourishment, warmth, clarity, empathy, being free from worldly cares
► GREEN – growth, balance, healing, self-assurance, benevolence, patience
► BLUE – conservation, healing, relaxation, exploration, trust, calmness
► PURPLE – spiritual awareness, physical and mental healing
► BLACK – profoundness, stability, knowledge, trust, adaptability, spontaneity,
► WHITE – mourning, righteousness, purity, confidence, intuition, spirits, courage
The Wishing Well is a physical manifestation of the wishes it holds. They are something caught in between – on their way to becoming more. I wish for guests to reflect on where they’ve been, where they are, where they are going, and where they wish to go.
All living organisms are composed of cells, and cells are fluid-filled spaces surrounded by an envelope of little material- cell membrane. Frei Otto described this kind of structure as pneus.
From first order, peripheral conditions or the packing configuration spatially give rise to specific shapes we see on the second and third order.
This applies to most biological instances. On a larger scale, the formation of beehives is a translated example of the different orders of ‘pneu’.
Interested to see the impact of lattice configuration on the forms, I moved on to digital physics simulation with Kangaroo 2 (based on a script by David Stasiuk). The key parameters involved for each lattice configuration are:
Inflation pressure in spheres
Collision force between the spheres
Collision force of spheres and bounding box
Surface tension of spheres
Weight.
Physical exploration is also done to understand pneumatic behaviors and their parameters.
This followed by 3D pneumatic space packing. Spheres in different lattice configuration is inflated, and then taken apart to examine the deformation within. This process can be thought of as the growing process of seeds or pips in fruits such as pomegranates and citrus under hydrostatic pressure within its skin; and dissections of these fruits.
As the spheres take the peripheral conditions, the middles ones which are surrounded by spheres transformed into Rhombic dodecahedron, Trapezoid Rhombic dodecahedron and diamond respectively in Hex Grid, FCC Grid, and Square Grid. The spheres at the boundary take the shape of the bounding box hence they are more fully inflated(there are more spaces in between spheres and bounding box for expansion).
Physical experimentation has been done on inflatables structures. The following shows some of the outcome on my own and during an Air workshop in conjunction with Playweek led by Will Mclean and Laylac Shahed.
To summarize, pneumatic structures are forms wholly or mainly stabalised by either
– Pressurised difference in gas. Eg. Air structure or aerated foam structures
– liquid/hydrostatic pressure. Eg. Plant cells
– Forces between materials in bulk. Eg. Beehive, Fruits seeds/pips
There is a distinct quality of unpredictability and playfulness that pneumatic structures could offer. The jiggly nature of inflatables, the unpredictability resulted from deformation by compression and its lightweightness are intriguing. I will call them as pneumatic behaviour. I will continually explore what pneumatic materials and assembly of them could offer spatially in Brief 02. Digital simulations proved to be helpful in expressing the dynamic behaviours of pneumatic structures too, which I intend to continue.
Moiré patterns are superimposed secondary patterns created when two static surface patterns are overlaid one on top of the other. By displacing or rotating one or both patterns a new visual pattern becomes visible separate to the geometry of the first two. This moiré effect is created in the eye of the viewer, disparate from the shapes formed by the individual patterns themselves.
A moiré pattern generated by overlapping two identical patterns of concentric circles
Associated mathematical formulas can be used to determine the size and spacing of inferred moiré patterns from a series of regularly spaced overlaid patterns. The beauty of the moiré effect is the illusion of movement created through completely static overlays. This forms a naturally interactive experience for the participant, giving over control to the superimposed pattern through visual movement and rotation.
Physical Moiré experiments
The video above illustrates the moiré effect in two dimensions by overlaying static linear and concentric patterns, printed on acetate, and manipulating their motion and rotation in order to create a new visual pattern.
Concentric and Linear patterns, printed on acetate overlays
This effect is not restricted to two dimensional patterns but can also be applied in three dimensions. These spatial patterns then utilise the motion of the viewer in order to manipulate the moiré effect. The video below illustrates how three dimensional sculpted elements, set on separate spatial planes can form a visual pattern and take advantage of simple motions by the viewer.
Scale model of the facade for Brisbane Girls School Creative Learning Centre – M3 Architects
The two primary resultant effects from the physical experiment above illustrate the potential of moiré to create alternate visual patterns and to generate the illusion of movement. These were then applied digitally to create an animation that controls these aspects to create a recognisable representation of motion to the viewer, as opposed to an abstract pattern.
Digital testing of the moiré effect in animation
The above digital animation illustrates the rotational movement of a circle through the movement of a linear overlay, created with the two static images below:
This moiré underlay is created through a series of rules defined by the size of the overlay and the direction, factor and type of movement (linear or rotational). The diagram below explores the rules associated with this specific type of moiré animation.
Rules for defining a moiré ‘underlay’ for linear animation
Whilst primarily a visual effect it is the ability to translate spatially which gives the moiré effect the potential to be applied in a design context, particularly given it’s interactive nature and the reliance on the involvement of participants in order to reveal it’s true beauty.
The video below takes this concept to the extreme, exploring the effects of imagining matter as nothing more than multi-dimensional moiré patterns……
Moiré – Julias Horsthuis
Updated Research:
Video illustrating various physical moiré experiments
Rules for defining moiré patterns in linear gratings
Mathematical rules for defining moiré patterns of rotation
Physical model for experimenting with moiré rotation patterns
Results from the physical model using sin curves & square gratings
Moiré patterns can be ‘programmed’ using a certain mathematical formula. If two variables are known; the base layer and the desired moiré pattern (in this instance a sin curve) the resultant reveal layer can be determined, allowing moiré patterns to be programmed to any shape.
Digital tests and physical proofs of programming moiré
Moiré patterns work in both ‘positive’ and ‘negative’ constructions. Positive moiré can be classed as additive, constructing patterns consisting of lines to create the effect. Negative moiré conversely removes elements of material (in this instance circles from card) to create patterns when held at a distance. The bottom row of images shows the most successful variables for discerning negative moiré patterns.
Negative moiré, set-up & physical experiment
The above experiment was digitally reproduced, modelling its negative space in order to understand how the variables of distance affect the reception of pattern.
Digital experiments with distance variables
In order to move from the plane into a spatial exploration of the moiré effect, sin curve gratings were mapped onto the faces of a cube, at varied rotations. The effect is a spatial understanding of moiré patterns when the various faces of the cube overlap. The moiré effect can be created by two distinct methods; a movement by the user, distorting the areas of overlap and the movement of the cube itself, visually shifting patterns.
Physical model exploring moiré patterns in three dimensions