BioBreathe – a biomachine at the Old Oak Common Station

The project ‘BioBreathe’ proposes an innovative way to integrate biogas technology into mobile architecture, in order to encourage the use of renewable energy in households and educate the public about waste removal alternatives. The biomachine consists of curved wood panels with detailed cuts acting as skin, which will move along with the naturally contracting and expanding movements of anaerobic digestion, simulating the chest movement of breath in and out. It functions as a portable unit which can be assembled anywhere to transform waste collected into energy.

Anaerobic digestion occurs naturally, in the absence of oxygen, as bacteria break down organic materials and produce biogas. The process reduces the amount of material and produces biogas effectively, which can be used as an energy source. It is relatively cheap compared to other sustainable energy and easy to set up even in domestic settings. A household biogas plant is approximately 1000 pounds which can provide adequate daily cooking gas and fertilizers to a family. With simple operation and distinct output, it will surely increase awareness of the novel sustainable solutions.

The expandable skin is first experimented with paper models, then tested on thin plywood sheets in the fabrication lab at school. Being a postgraduate student in the University of Westminster, it will be a precious experience to build and publicize my own design. It will be a showcase for sustainable architecture that gathers talented design students to join the team of fabricating the structure.

The machine is initiated by inserting waste into the digester , gas created will go through a gas pressure mechanism and active filter, then released by a gas pipe to provide energy for a burning flame. The wood skin follows the movement of the gas holder, expanding when more gas is collected, vice versa. The structure is scalable, which can be developed into a larger plant to provide energy for communities. 

To increase engagement of the community, BioBreathe is proposed to be built at the Old Oak Common Railway Station, which will offer unrivalled connectivity to the high speed two railway. The expected high flow of circulation will furthermore promote the project and impact the society.


Modular Inflatable Air Purifying Structure

BIO-bubble is a modular, inflatable, air purifying structure. It comprises of recycled, 3D printed bio-plastic tubes, with ETFE pillows cushioned between. The tubes act as microalgae bio-reactors, which are encased within a second tube which keeps air circulating to the recycled ETFE cushions.

Majority of the structure is air, water, and air-purifying microalgae, creating an efficient, ecological bio structure.

The structure comprises of inter-connecting modules which can have different functions. They can act as an inflatable structure that people can walk through, and kids can play inside. The modules can also act as a greenhouse, with the dark, water-filled base acting as a heat sink. The heat stored during the day from solar energy is released at night to maintain a warm environment for the plants within.

It is a showcase for sustainable novel design solutions, which is accessible to public. 

Because the structure is so lightweight, it can be assembled easily in any location, allowing different local communities to interact with it. The lightness of the structure means it has a low in embodied carbon and minimizes emissions associated with transportation, installation and dismantling. It can also be scaled up or down.

The microalgae growing within the structure can be harvested to be used for various bio-materials or bio-fuel.



At the start of the year, coupled with Grasshopper training we will be looking at lattices as a granular spatial organising principle. From molecular systems to quasi-crystals, nature organizes itself through space efficient, resilient and complex arrangements.

We’re back!!!


Excited to share with you our new brief:

Studio Intro Slides

Brief 01: 3D Lattices/ Urban Crystallography & Self-Sufficient Bio-Machines:
At the start of the year, coupled with Grasshopper training we will be looking at lattices as a granular spatial organising principle. From molecular systems to quasi-crystals, nature organizes itself through space efficient, resilient and complex arrangements. We would like to start the year with a study of all these three-dimensional systems as an exercise to understand the many ways structures can be arranged in space. Using timber struts and nodes, or surfaces and hinges, whether defining space packing volumes or porous three dimensional grid shells, the modularity of the systems allows us to work at all scales. However for the first brief we expect you to design and build a self-sufficient small scale bio-machine interacting with the given sites. Like a tree absorbing carbon whilst creating timber and fruits, your architectural system will be a blend of technology and nature in the urban context.

Ghee Beom Kim‘s 3D lattice
A Cascade of Water Over Terra Cotta Tubes Functions as a Beautiful  Low-Energy Air Conditioner | Colossal
 Ant Studio‘s clay air conditioning alternative

Brief 02: Eco-Parametric Urban Infrastructures to combat climate change
Nature does not make waste, everything is reused and feeds back into the system. DS10 will learn from this by applying the principles of permaculture, regenerative agriculture and renewable energy generation to propose Eco-Parametric Urban Infrastructures. You will design and test large scale infrastructures tightly interwoven into and above the urban fabric of London’s train tracks which immersively integrate nature into the city using your 3D lattices as a reference.  We are seeking new architectural ideas which address energy needs in the age of the circular economy. Your mixed use infrastructure will create energy and deal with its waste to close the loop whilst helping people live better and healthier lives and create an economy in the process. Proposals may include self sufficient communities and economies, cradle to cradle business ideas, inhabited bridges forging connections between different sides of the tracks and structures which actively contribute to the area such as carbon capture devices, solar collectors, pollution scrubbers etc,

 Zainab Kahn, The Spirulina Bank

Site: The underused spaces over the existing railway tracks of central London will form the foundations for exciting large scale mixed use structures, creating new connections and a new hyper dense and hyper sustainable urban fabric.

Output: Rather than a traditional paper portfolio we will focus on digital representation techniques such as animations, high quality digital renders which explain the process of your work. You will become a member of the community (1.7 million viewers) sharing your research and studio submissions to inspire and contribute to the wider design community. Blog posts will form part of your portfolio submission.


Zainab Kahn, The Spirulina Bank
Nikola Wolkova, Rewilding Tensegrity
This year’s site: London’s Train Tracks

Waste Recycling Tomato Pods

Is waste the future?

With climate change and the world turning to new sustainable alternatives of producing energy and recycling materials, we as designers should be thinking of new ways of reusing waste and using resources available to us. Human waste has many uses and should not just be flushed down the toilet and sent away to the sewers. It should be returned back to the soil with all it’s nutrients to help grow food, instead of the use of chemical fertilisers.

Both urine and faeces are useful resources in their own ways but have to be separated out. I have designed a toilet and system which splits the two.

Human excrement if kept in anaerobic conditions in a sealed container will start to produce methane. The higher the temperature, the faster the material decomposes, and the higher the rate of production of methane gas. This methane can be used as an energy source.

Urine can be diluted to make a natural fertiliser which should be applied directly to the root system of the plant. It is best to do this immediately or within 24 hours to ensure that ammonia is not released which causes it to smell. However animals will be able to detect the smell and hence it acts as a natural animal repellent.

Urine fertiliser is particularly beneficial for plants which require a lot of nitrogen to grow like tomato plants.

I was inspired by the unusual, striking form and scale of the baobab trees, native to Africa. They are sometimes referred to as “the upside down tree”. They swell up drawing in all the water they can, storing it inside their trunk like a water tank, to ensure they will survive in the dry months.

I explored ways of achieving this swelling geometry on Grasshopper, and used the plugin called Fattener to grow the shape in different areas, controlled by separate parameters.

I then unravelled this radial shape, and tested other options to see which one received the most sunlight all year round.

The toilet pods needed to have the right balance between privacy for the users, and receiving the most sunlight for the tomatoes. I used expressions on Grasshopper to cull the faces of the mesh in a certain way to make sure the parts of the pods that you could see into were made from timber, and the other parts would be made from bio-polycarbonate to let in sunlight for the tomatoes.

Instead of this stepped geometry achieved from culling faces, I added veining with the new Rhino 7 multipipe tool and separated the geometry this way.

Using the plugin Anemone with Grasshopper, I analysed the how the rain would fall on the pods and the overhang to collect rainwater to mix with the urine to then fertilise the tomato plants.


Plant rich diets & agroforestry are methods to reverse global warming from Drawdown. This project returns Plant Trade heritage to Docklands through Wardian Terrariums, self-sustaining microclimates that aid plant growth from all hemispheres. Fruit, veg & herbs are home grown within high-rise greenspaces. Inspired by the photosynthetic properties of coral, the buildings plants grow symbiotically with controlled levels of sunlight, energy, temperature & moisture.


Rotherhithe has been selected as the site for brief 1, with Beckton as the site for brief 2. Both sites are located in Docklands.

Rotherhithe, South west London, is currently under planning with proposals to build a multi-use housing development around the gasometer. In 2019, the Rotherhithe Gas Holder company opened a temporary Hub to receive resident feedback for the planned development. Lots of feedback was in relation to the heritage of Rotherhithe, with residents requesting the history of the site is maintained and celebrated.

The name ‘Rotherhithe’ derived from the Latin translation of ‘Landing place’, as it was part of the Docklands trade, with raw materials and goods being imported to the site via ships from around the world. The proposed artefact re-creates native climates from all hemispheres for native & imported plants that grow herbs, fruits, spices and botanicals.

Rotherhithe Warehouse, 1960


Taking inspiration from the death of a coral skeleton after bleaching, the artefact is based on a replicated ‘mesh’ aspect of strong and resilliant branching coral.


Taking the resillience of a coral mesh, I have experimented on Grasshopper with different methods of creating the initial design concepts of my artefact. The mesh will act as a supportive shell, with plants integrated throughout.


The Grasshopper experiments are transformed into various containers based on the concept of Wardian Cases, providing various moisture, light and temperature conditions for each individual plant.

Brief 2:


Reviving the Docklands Plant Trade heritage through Wardian Cases

This project celebrates our scientific movements away from the industrial era through our ability to re-create self-sustaining climates for plants.
The discovery of the Wardian Case- the original terrarium, demonstrates a simple yet powerful ability to re-create its own self-sustaining climate, allowing biodiversity to grow & thrive. Docklands was the largest importer of raw materials including plants, herbs, fruits, veg & many more in the world.

‘Bio’, with the latin meaning ‘organic life’, is becoming increasingly considered through trends such as biophilia, biomimicry and biomorphism. The Biosphere (Earth), must have such trends prioritised at the forefront of design in order to help keep our planet inhabitable. Drawdown: The most comprehensive plan ever proposed to reverse global warming, is an intricately researched document on our top 100 most effective methods of reducing and reversing the climate crisis The document covers all issues concerning global warming from family planning/population control to refridgeration, plant-based diets, and organic material usage. Some of the most effective topics have been applied to my proposal are:

• Regenerative farming
• Plant rich diets
• Educating girls
• Solar energy
• Mass organic food production

The fully self-sustaining multi-functional arcological hyper building incorprates public spaces such as horticultural education, plant nurseries & labs that breed native & endangered plants, & informative public exhibitions, along with residential sectors that offer organic food farming inspired by the Wardian Case Terrariums.

Drawdown summarises ways to help reverse global warming. Regenerative farming, plant rich diets, biodiversity & permacultire are some Drawdown methods that I have incorprated into my project. Below is a full list of the methods I have included, and individual summaries of why these methods have been incorprated into my residential biodiverse tower.