Auxetic Assemble

As the Maker World develops, we want to have a greater impact on our environment, the spaces we live in. Auxetic Assemble gives you a chance to build your own furniture and have a input in your product. Auxetic Assemble gives you the chance to buy either the cut parts for the product or the instructions and CNC cutting files to then source your own material, cut your own product and assemble your work. The future of this adaptable design system allows the product to be fitted and designed to your require space.

 

The Pavilion

I have set up a Kickstarter Campaign in order to Fund a Pavilion in Hackney. The Pavilion is the next step in the journey to developing this system to its future potential. The construction process used for the plywood shelves will be developed at the larger scale to develop a pavilion to display the process of constructing the shelves and to exhibit the product. The Pavilion walls will become the seating, shelving and tables for the space. This is a chance to explore the system at a larger scale in order for further development for future of housing, an adaptable system that can be applied to a unique space and engages everyone as its workforce to build it.

Kickstarter Page

 

The Products

 

The design system has been developed into shelving product to sell as rewards, both in cardboard and plywood.

Table Top Plywood Shelves

Table Top Cardboard Shelves

Kickstart Photo 02

SONY DSC

SONY DSC

 

Follow the links to the Kickstarter Page to help this project be realized, Click on any image for the Kickstarter page link. Thank you.

 

Auxetics

Auxetics are materials that have a negative Poisson’s Ratio. When stretched they become thicker perpendicular to the applied force, from our own experiences when a material is stretched we expect the material to not only become longer but also thinner. Auxetics behave in a different way because of there internal structure.

Poisson’s ratio (v) of a material is the ratio of the lateral contractile strain to the longitudinal tensile strain for materials undergoing tension in the longitudinal direction. It shows how much a material becomes thinner when stretched, therefore most materials have a positive Poisson’s ratio.

 

The images below show modules of four structures that have Auxetic behavior. The images show the change in state of the structure as they undergo tension in the longitudinal direction.

0103

 

 

 

04

05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06

This video shows an interesting application of an auxetic structure with inflatables by Fergal Coulter. http://fergalcoulter.eu/

 

 

01 02

 

Final Render 01

19th October 2015 Tutorials

Hello Everyone – Back in our studio studying mathematical, biological and made-made systems using parametric tools and digital fabrication for our BRIEF01: EXPLORE. Here are couple highlights from yesterday’s tutorial showing the initial study models and drawings needed to explain the rules of the system and their creative possibilities.

Thin layered structures based on Japanese craft and the artist Shono Shounsai by Hamish Mac Pherson
Thin layered structures based on Japanese craft and the artist Shono Shounsai by Hamish Mac Pherson
Auxetic Structure from Paper by Alex Sommerville
Auxetic Structure from Paper by Alex Sommerville
The mathematics of moire patterns by Tom Jelley
The mathematics of moire patterns by Tom Jelley
Variations on Curves of Pursuit by Josh Potter
Variations on Curves of Pursuit by Josh Potter
Extending the faces of Isocahedron variations creating interlocking structures by Aslan Adnan
Extending the faces of Isocahedron variations creating interlocking structures by Aslan Adnan
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Truncated Polyhedron shaped from the planar corners by Agnieszka Tarnowska
Truncated Polyhedron shaped from the planar corners by Agnieszka Tarnowska