Curved Crease Folding

The history of curved crease folding goes back to as early as the Bauhaus, where a student had scored circular creases onto a paper in order to study its materiality. When a circular surface is folded along concentric rings, the resultant form bends on itself and forms a paraboloid in order to make up for the loss in circumference. Initial investigation involved the replication of such system and multiplying the modules which are then interlocked into each other to create various origami sculptures.

The system is then digitally simulated in order to extract the parameters which may affect the resultant geometry of the surface. With a combination of Kangaroo Physics, Hinge Forces and Springs, the digital simulation is created which allows anchor points to be placed, thus dragging for surface into various forms. Tests are carried out on different surfaces, including a closed circle of equal concentric rings, a closed circle of increasing concentric rings as well as an open circular strip with concentric rings. With an increasing fold angle, the bend angle increases.

Upon cutting the closed circle, the surface becomes an open ended circular strip. The constraints that follow a closed surface no longer presents itself, thus allowing the strip to bend freely – although the principles of the system still applies. With increasing fold angles, the strip bends at greater angle. Having this revelation, different open ended strips are then tested against different parameters to extract the system further.

In parallel to the research of curved crease folding is the investigation into the probability of transferring the system onto a more rigid, larger material, such as plywood. Here lattice hinge / kerf folds are employed, allowing the plywood to bend in a similar manner to card and paper. The final patterns for the hinges are a result of rigorous testing through trial and error. By repeating the modules we begin to see that, due to the folds, plywood can be as flexible as card.