Chapel of mercy

The time has come for the Church to take up the joyful call to mercy once more. (Pope Francis)

During the Jubilee Year of Mercy, the faithful are invited to make a pilgrimage to particular shrines around the world, many of them hosting a Holy Door.

In London, the Cardinal has designated a number of parishes where indulgence may be gained by passing through the Holy Door. My project intends to use this opportunity to create a pilgrim chapel which would travel throughout the year to highlight the London churches designated with a Holy Door.

London holy doors mapLondon churches with a Holy Door

Not only will this chapel be a place of prayer, it will also be a space for reconciliation. When the Missionaries of Mercy will be sent out during the season of Lent to the Diocese of Westminster, the chapel could be used for confession.

The chapel is meant to have a strong relationship with the door of the church by resembling the geometry of the rose windows usually found above the entrance to a sacred place. The configuration with eight petals was chosen for its pleasing symmetry, and because of the geometry it creates when tessellated: a Greek cross.

2.jpg‘Rose’ configurations

The canopy is formed by two layers of expandable geometries to give added rigidity and privacy. The two layers are spaced apart by metal rods fixed key nodes of the two layers.

The canopy is fixed to the rectangular base by metal bolts, at the four corners. Also attached to the base are the two confessionals, the kneeler and the cross, symbol of mercy and forgiveness.


The Pilgrim Chapel is intended to be a space of light, peace and reconciliation, where visitors of all faiths and none can experience tranquillity. Light plays an important role in the experience of the chapel as it creates intricate shadow patterns.

Chapel eye levelChapel interior

Here is a short video showing the design development process:

Da Vinci Codex

‘Da Vinci Codex’ is a latticed sculptural piece which creates unique poetics of morphology that merge structure and movement. It transgresses the artificial boundary between art, science and technology, casting seemingly established analogies in a new light while inviting visitors to rethink the relationship between form, geometry and construction. Linear and curved scissor elements form a series of recursive cubes which speak of infinity and the complexity of our world. It denotes a recognizable metaphor of ‘object-within-similar-object’ that appears in the design of many other natural and crafted objects. The precision of the cubic form reflects the organised chaos of our universe. Poignant patterns inspired by a study into the scissor movement of the cube elements are perforated into the triangulated parts of the Codex.

Da Vinci Codex 1

Da Vinci Codex 2

As they expand and collapse, the triangles form unique and intricate shadows which highlight the transitional quality of human life and emotions, changing from a state of happiness to sadness, from calm to anger, from life to death. The structure provides shelter from the heat of the sun while entertaining its guests with opportunities to engage with the structure. A deployment mechanism inspired by study into Leonardo da Vinci’s machinery sketches found in his Codex Atlanticus is actuated by a series of gears situated at the base of the structure, which are set into motion by a pedal system powered by visitors. As burners interact with the piece, they contemplate a fascinating and spectacular change of light and decor. ‘Da Vinci Codex’ stands as a piece of event architecture, a spatial construct where movement is a transformational creative force.

The visitors interact with the piece by powering one of the four pedal systems connected to the deploying mechanism. As they pedal, the burners witness a captivating movement: the synchronised expanding and collapsing of the three cubes which cast intricate shadows and stimulate a sense of play. The visitors can also step inside the cubes and experience a series of ‘in-between’ spaces before reaching the central volume and enjoying a level of protection from the wind and sun. The highly abstract aesthetic of the ‘da Vinci Codex’ is meant to affect the community with a spirit of experimentation and encourage each and every burner to question preconceived ideas, beliefs or desires.

Da Vinci Codex

Da Vinci Codex3Da Vinci Codex2

The size of each member has been carefully considered not only to allow structural integrity but also to respect the proportions of the human body. Each face of the cube moves in a synchronised manner. The relationship between the size of each face and proportions of the human body has been inspired by da Vinci’s Vitruvian man.

BM open cubeBM night render

Deployable structures

A deployable structure includes an enclosed mechanical linkage capable of transformation between expanded and collapsed configurations while maintaining its shape.

These types of structures have the advantage of creating versatile, modulated spaces, with easy and fast assembly which generate benefits such as adaptability, flexibility and space transformation.

Charles Hoberman pioneered a type of deployable structure based on curved scissor pairs as seen in his Hoberman sphere. The unfolding structure resembles an expanding geodesic sphere which can reach a size up to five times larger than the initial one. It consists of six loop assemblies (or great circles), each made of 60 elements which fold and unfold in a scissor-like motion. Portfolio 2.jpg

Hoberman Sphere by Charles Hoberman

A loop assembly is formed of at least three scissors-pairs, at least two of the pairs comprising two identical rigid angulated strut elements, each having a central and two terminal pivot points with centres which do not lie in a straight line, each strut being pivotally joined to the other of its pair by their central pivot points. The terminal pivot points of each of the scissors-pairs are pivotally joined to the terminal pivot points of the adjacent pair such that both scissors-pairs lie essentially in the same plane.Portfolio 22

Regular curved scissor-pairs in motion

When this loop is folded and unfolded certain critical angles are constant and unchanging. These unchanging angles allow for the overall geometry of structure to remain constant as it expands or collapses.Portfolio 23

Regular and irregular curved scissor-pairs in motion

The above diagrams show a closed loop-assembly of irregular scissors pairs where each scissors-pair is pivotally joined by its two pairs of terminal pivot points to the terminal pivot points of its two adjacent scissors-pairs. This loop-assembly is an approximation of a polygon in the sense that the distances between adjacent central pivot points are equal to the corresponding lengths of the sides of the polygon. Further, the angles between the lines joining adjacent central pivot points with other similarly formed lines in the assembly are equal to the corresponding angles in the polygon.

The beams forming scissor-pairs can be of almost any shape, providing that the three connection points form a triangle. The angle of the apex would dictate the number of scissor-pairs that can be linked together to form a closed loop.Portfolio 28.jpg

Scissor-pairs of varying morphologies

My physical experiments started with materials that would allow a degree of bending and torsion in order to test the limits of the system. Using polypropylene for the angular beams and metal screws for the joints, I created these playful models that bend as they expand and contract.Portfolio 214.jpg

Later I started using MDF for the beams as well as joints and noticed that a degree of bending was present in the expanded state of the larger circle.Portfolio 215.jpg

After using curved scissor pairs of the same angle to form closed linkages, I decided to combine two types of scissors and vary the proportion between the elements to achieve a loop which would offer the highest ratio between the expanded and contracted state.Portfolio 216.jpg

900 curved scissors loops

Portfolio 217.jpg

900 curved scissors with linear scissors loops

The above diagrams show a combination of 900 curved scissors with linear (1800) scissors to form rectangles that expand and contract. The length of the 900 beam was gradually increased  and by measuring the diagonals  of the most expanded and most contracted forms, I obtained the following ratios for the three rectangles:

R1 = 0.87

R2 = 0.67

R3 = 0.64

By keeping the curved scissor with the best ratio, I created three more rectangles, this time by varying the length of the linear beam. The following ratios were obtained:

R1 = 0.64

R2 = 0.59

R3 = 0.67Portfolio 218.jpg

900 curved scissors with linear scissors loops

I then took the linkage with the best ratio of 0.59 and rotated it 900 to form a cube which expands and contracts.Portfolio 219.jpgPortfolio 220.jpg

Combined linkage cubes

The change of state from open to closed is visually attractive and could have the potential of creating spaces that are transitional.Portfolio 223If more linear scissors are placed between the 900 scissors, a better contraction ratio is obtained.Portfolio 222

Combined linkage cubes with two linear scissors