Beehive Ginger/Cotton Production Studies


BRIEF01 for this year in DS10 began by analysing a plant of our choice that we discover/research from Kew Gardens, London. I started BRIEF01 by researching the Beehive Ginger. I thought the flower’s extensive colours, spiralling bracts and form made the flower quite unique. Having researched the Beehive Ginger, I then discovered that ginger (family) is produced mainly, in China and India. Moving on from researching the flower, I then went on to analysing the form of the flower, as seen below. This exercise helped me distinguish which characteristics of the Beehive Ginger I wanted to model.


I then went on to creating several different models on Rhino of the Beehive Ginger to better understand the flower.

The first step was to create curves which mimic the beginning, middle and end of a single bract.

The second step was to create a line connecting all the curves together in one direction.

The third step was to use the Loft command to turn the curves into a singular bract.

The fourth step was to use the ArrayPolar command to copy and array the bracts into a cluster.

Finally, to create several clusters of bracts on top of another, as one could find on a Beehive Ginger – I copied and scaled the bracts into different sized clusters to represent the different sizes throughout a singular Beehive Ginger.

The first step is to create a curve and mirror it.

The second step is to use the ArrayPolar command to create a floral shape that will mimic the bract formation of a Beehive Ginger.

The third step is to copy the floral shape, scale and rotate the shape into different angles. This will create the formation of the Beehive Ginger.

The fourth step is to extrude all shapes to give the model volume and dimension.

Due to the interesting shapes the model created, I wanted to play with the light/shadow aspect of the physical model using a solar analysis digitally.

I started by creating a wall made up of my Beehive Ginger model, this was done to create maximum shadows in one area.

I used the DIVA plug-in in Grasshopper and used Chennai, India as my location for the solar analysis. The reason for using Chennai in South India is due to the fact that Ginger is largely produced there. For this reason, Chennai can be a possible site location for BRIEF02.

I used the plug-in for the Winter and Summer Solstice of Chennai, India.


To create a shift from digital to physical modelling – I decided to mimick the latter digital model physically through laser cutting and using the same alternating methods I used digitally to create the flower. I used corrugated card to create thickness that I achieved through extruding on Rhino. he smaller model did not define the bracts as well as it did digitally due to how densly packed, close and small the bracts were. To create more prominent bracts, I scaled the model up and made the bracts protrude more. I found the alternating angles of the flower shapes that were created interesting as it created corrugated shadows when light is shone through it. I demonstrated this through a torch in a dark room to show this through artificial lighting. As well as demonstrating this through natural daylight which I found more effective. This lead me to believe that this corrugated pattern could be used in daylight rather than artificially. This experiment also helped me proceed to more exploring in BRIEF 01, as the corrugated pattern was an important element rather than the Beehive Ginger flower itself.


To mimic the everchanging colours of a Beehive Ginger, I wanted to dye fabric sustainably and mimic the colours. Cheesecloth was my most accessible and cheap material which I could find. As commonly known, dyes are toxic and unsustainable. To create a more sustainable dye process, I used vegetable dyes This included raspberries, red cabbage, beetroot and grated carrot. I started by boiling the vegetable in water to release the natural dye from the vegetable. The next process was to drain and seperate the coloured water and the vegetable. After this, I dipped my cheesecloth into the water and hung it to dry. Then by layering the materials over each other and trimming them to look like the Beehive Ginger.

After dyeing the material as previously done, I cut 4 strips of material, all of the same width and length.
I took 2 of these materials and by using PVA glue, I stuck them together to create a thicker and stronger fabric.
I then took 1 part PVA glue and 3 parts water to create a paste
I dipped all my materials into my paste then hung it to dry.
To create a corrugated pattern, I used a hot glue gun and bent the material into the corrugation that the cardboard creates.
I then stuck the 2 left over materials on top and beneath the corrugated material which created the corrugated cheesecloth.
This was the final product after this experiment was finished. I created a strong wall unit that could evidently create a truss or a house.

I started by doing the processes from my older experiments, including cutting the materials into 4.

Then dipping them into PVA glue to stiffen them.

This was done several times as the shelter had several components to it.

With 12cm intervals, lines were drawn to map out the fold of the corrugation.

The material was then folded over to create the corrugated pattern.

PVA glue was placed on the top of each side of the corrugated cloth

Material was then laid on top to create the surfaces of the corrugation.

The material was then ironed over the PVA glue to seal it with heat and create a strong bind.

To attach corrugated cheesecloth to one another, velcro was used. This makes the shelter easy to assemble and portable.

As a single layer, the corrugated wall held its shape and was a strong structure.

When doubled up to create a full height wall, this became too heavy to be a freestanding structure and toppled over. Just like a house or even a tent, the shelter required beams and foundations.

By placing dowls through the corrugation and leaning them against one another, I was able to create a shelter. Despite the fact that this shelter did not end up how I anticipated, it still held its shape, it is still portable and it can be further improved to create a proper building.


According to an article from written in 2013, ‘

Five years ago this month, more than 1,000 people died and thousands more were injured when Rana Plaza, an eight story-building home to several garment factories, collapsed. Considered to be the worst garment factory disaster of all time, and the worst industrial accident in Bangladesh, the collapse drew worldwide attention to an issue that’s often discussed by consumers but rarely acted upon: the dark side of the garment industry. It took two years for the government to compensate the workers of the tragedy.
Arguably little has changed to improve working conditions in the garment industry, or make fast fashion more ethical in the years since. Unlike the 1911 Triangle Shirtwaist factory fire, which ushered in a new era of labor codes and safety measures for American workers, working conditions in the Bangladeshi garment industry remain precarious.

Yet fast fashion not only has consequences for humans, it also has consequences for the environment. The $2.5 trillion fashion industry is the second-largest user of water globally. In the U.S. alone, 13 trillion tons of clothes wind up in landfills each year, leading to soil and groundwater pollution. Greenhouse gas emissions for the industry are also on the rise, and expected to increase by 60% by 2030, with the industry already accounting for 10% of global carbon emissions.

Retailers seem increasingly aware of the environmental impacts of fashion and many have launched sustainability and recycling programs in response. However, terms like “corporate social responsibility” and “sustainability” are thrown around so casually, it makes it difficult for consumers to decipher whether these are just buzzwords or genuine efforts by brands to hold themselves more accountable for the social and environmental ills associated with their industries. In 2014, the average consumer bought 60% more clothing than in 2000 and kept each item for half as long, fueling critics’ arguments that these programs might only promote habits of “guilt free consumption” our throw-away society yearns for. The NYT recently reported that H&M has $4.3 billion worth of unsold inventory, prompting further questions over both the environmental and economic sustainability of fast fashion.’

So, Fast fashion grew out of a demand for affordable, ready-to-wear styles fresh off the catwalk, but how viable is this industry today? Are our appetites for the latest trends really worth the social and environmental costs?

WATER SHORTAGE AND POLLUTION: India exports enormous amounts of water when it exports raw materials such as cotton. The water consumed to grow India’s cotton exports in 2013 would be enough to supply 85% of the country’s 1.24 billion people with 100 litres of water every day for a year. Meanwhile, more than 100 million people in India do not have access to safe water. By exporting more than 7.5m bales of cotton in 2013, India also exported about 38bn cubic metres of virtual water. Those 38bn cubic metres consumed in production of all that cotton weren’t used for anything else. Yet, this amount of water would more than meet the daily needs of 85% of India’s vast population for a year.

IMMENSE QUANTITIES OF WATER: Producing 1kg of cotton in India consumes 10,000 litres of water, on average, according to research done by the Water Footprint Network. In other words, these 10,000 litres of water cannot be used for anything else because it has either evaporated or is too contaminated for reuse. Even with irrigation, US cotton uses just 8,000 litres per kg. The far higher water footprint for India’s cotton is due to inefficient water use and high rates of water pollution — about 50% of all pesticides used in the country are in cotton production.

DEVESTATING CONSEQUENCES: The Aral Sea – Once the 4th largest lake in the world lying between Kazakhstan and Uzebekistan, now gone – mainly because of cotton cultivation. It has been called one of the planet’s worst environmental disasters by the UN. Where there was once a vast water reserve, cotton farms surrounding it used up all of this precious resource leaving behind a toxic, barren wasteland that affected thousands of local habitants. Pesticides and chemical residues that were left behind were so deadly, that many locals were exposed contracted tuberculosis and cancer.

DEADLY POLLUTION: Instead of the Aral Sea, 43 million tonnes of pesticide laden dust is blown in the air every year. The Aral Sea region suffers from the highest rates of throat cancer in the world – representing 80% of the cases of cancer. Hazardous pesticides commonly used for cotton production are often found in nearby water resources. In Uzebekistan, ground water at depths up to 150m is often polluted with pesticides. Around 85% of the population suffers from poor health as a result of unsafe drinking water.


220,890,489,650 tonnes of water used in cotton production globally

164,926 tonnes of organic cotton produced globally

£190 earned by low-wage sweatshop worker annually

25,051,491 tonnes of cotton produced globally

£1,719,201,019 spent on cotton pesticides worldwide

Around 260 million children are in employment around the world, according to the International Labour Organisation. Of them, the ILO estimates that 170 million are engaged in child labour, defined by the UN as “work for which the child is either too young – work done below the required minimum age – or work which, because of its detrimental nature or conditions, is altogether considered unacceptable for children and is prohibited”. Child labour is forbidden by law in most countries but continues to be rife in some of the poorest parts of the world. The situation is improving. ILO estimates suggest child labour declined by 30% between 2000 and 2012, but still 11% of the world’s children are in situations that deprive them of their right to go to school without interference from work.

MINIMUM WAGE VS LIVING WAGE: The difference between the minimum wage and the living wage. To say instead – The Living Wage is based on the Asia Floor Wage 2013 figure of PPP$725.

HEALTH AND SAFETY: 50 workers have died and another 5000 are sick due to blasted sand inhalation in denim factories in Turkey. 14 people were killed in a fire at the Bangladesh firm Tarzeen Fashions in 2013. 1,134 garment workers lost their life when a textile factory collapsed in Dhaka in 2013.

FORCED LABOUR: Every year the Governments of Uzbekistan and Turkmenistan, two of the world’s largest exporters of cotton, force hundreds of thousands of people out of their regular jobs and sends them to the cotton fields to toil for weeks in arduous and hazardous conditions. Some have even died in fields from extreme heat and accidents. “You work like a slave from morning till night, not enough food, [we] sleep and wake up hungry again.” – student of Andijan Agricultural Institute, Uzbekistan, September 2016.

WORKING HOURS: 7 days a week is the normal working schedule for garment workers. 14 – 16 hours per day is the average working day in most manufacturing countries. 96 hours per week is the normal working week for a garment worker.

To combat issues with the textile industry, for BRIEF02, I would like to create an ethically and environmentally sustainable factory for textile workers which promotes a healthier wellbeing and a safer work environment. For my concept sketch, I decided to use the Beehive Ginger’s form as the silhouette of the factory. As the plant spirals downward to the stem, I decided to replace the bracts for the corrrugation patterns that I researched during the term. This could be windows, structural support or there for aesthetic purposes. The factory will be based in Chennai, South India as the Beehive Ginger mostly grows in India, and cotton is mostly grown in India as well, with the South of India being largely affected by the sweatshop aspect of the textile industry.