Omnis Stellae

Omnis Stellae – Redrawing your own constellation

“Only in the darkness can you see the stars”
Martin Luther King

 

This project involves the conception and design of a new way of mapping constellations, based on subdivision processes like Stellation. It explores how subdivision can define and embellish architectural design with an elaborate system of fractals based on mathematics and complex algorithms.

Example of Stellation diagram on a platonic polygon

An abstracted form of galaxy is used as an input form to the subdivision process called Stellation. In geometry, meaning the process of extending a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure.

Omnis Stellae – Daytime interior render view

The material used for this installation will be timber sheets of 1/3 of an inch thickness that will be laser-cut.The panels will be connected to each other with standard connection elements which have already been tested structurally based on an origami structure.

The lighting of the installation will consist on LED strips that will light with burners interactions.

Omnis Stellae – Daytime exterior render view

Although stars in constellations appear near each other in the sky, they usually lie at a variety of distances away from the observer. Since stars also travel along their own orbits through the Milky Way, the constellation outlines change slowly over time and through perspective.

There are 88 constellations set at the moment, but I would like to prove that there are infinite amount of stars that have infinite amount of connections with each other.The installation will show you all the possible connections between this stars, but will never rule which connection is the one you need to make.

Omnis Stellae – Daytime interior render view from the ground

I would like burners to choose their own stars and draw their own constellations. Any constellation that they can possibly imagine from their one and only perspective, using coloured lights that react to their touch.

The end result will have thousands of different geometries/constellations that will have a meaning for each one of the burners and together will create a new meaningful lighted galaxy full of stars.

 

Omnis Stellae – Nightime exterior render view

On a clear night, away from artificial light, it’s possible to see over 5000 stars with the naked eye. These appear to orbit the Earth in a fixed pattern, as if they are attached to a giant sphere that makes one revolution a day.This stars though are organised in Constellations.

The word “constellation” seems to come from the Late Latin term cōnstellātiō, which can be translated as “set of stars”. The relationship between this sets of stars has been drawn by the perspective of the human eye.

Omnis Stellae – Daytime interior render view from above

“Omnis Stellae” is a manifestation of the existence of different perspectives. For me, there is great value in recognising different perspectives in life, because nothing is really Black and White, everything relates to the point of view and whose point of view and background that is.

As a fractal geometry this installation embodies an endless number of stars that each person can connect and imagine endless geometries, that will only make sense from their own perspective. The stellated geometry will show you all the possible connections but will never impose any.

Omnis Stellae – Daytime and Nightime

“Omnis Stellae” is about creating your own constellations and sharing them with the rest of the burners, is about sharing your own perspective of the galaxy and create some meaningful geometries that might not mean anything to other people but would mean the world to you.

Omnis Stellae – Daytime interior render view

The grand finale is if it could become the physical illustration of all the perspectives of the participants at Burning Man 2018 shown as one.

With Love,

Maya

 

 

 

16/05/14 DS10 Final Cross-Crit

We had our final crit today! Great projects concluding our brief2B:Realize. Here are couple pictures. Thank you very much to our external critiques Daewha Kang (Associate Zaha Hadid Architects), Lawrence Friesen (GenGeo), Stephen Melville (Director Ramboll UK), James Solly (Buro Happold), Michael Clarke and to our colleagues Anna Liu and Roberto Botazzi.

Joe Leach's Burning Man Temple
Joe Leach’s Burning Man Temple
Joe Leach's Burning Man Temple
Joe Leach’s Burning Man Temple
Andrei Jippa's 3D printed fractal city
Andrei Jipa’s 3D printed fractal city
Andrei Jippa's 3D printed fractal city
Andrei Jipa’s 3D printed fractal city
Josh Haywood's Pop-Up Mosque in Trafalgar Square
Josh Haywood’s Pop-Up Mosque in Trafalgar Square
Garis Lu's Mont St-Michel's Chanting Bridge
Garis Lu’s Mont St-Michel’s Chanting Bridge
Lorna Jackson's Surreal Dali Museum
Lorna Jackson’s Surreal Dali Museum
Lorna Jackson's Surreal Dali Museum
Lorna Jackson’s Surreal Dali Museum
William Garforth-Bless'Bamboo Tower for the Damyang festival
William Garforth-Bless’Bamboo Tower for the Damyang festival
Charlotte Yates' London Fasion Festival Origami Catwalk
Charlotte Yates’ London Fasion Festival Origami Catwalk
Charlotte Yates' London Fasion Festival Origami Catwalk
Charlotte Yates’ London Fasion Festival Origami Catwalk
Sarah Stell's Zipped Building
Sarah Stell’s Zipped Building
Sarah Stell's Zipped Building
Sarah Stell’s Zipped Building
Georgia Collard-Watson's Burlesque Festival Pop-Up structure
Georgia Collard-Watson’s Burlesque Festival Pop-Up structure
Naomi Danos' joyful wall breaking media centre in Israel/Palestine
Naomi Danos’ joyful wall breaking media centre in Israel/Palestine
Jessica Beagleman's Kabbalah Centre
Jessica Beagleman’s Kabbalah Centre
George Guest's Fringe Festival Bridge
George Guest’s Fringe Festival Bridge
Sarah Shuttleworth's Promenade Concerts in Hyde Park
Sarah Shuttleworth’s Promenade Concerts in Hyde Park
Dhiren Patel's twisting hexagons bamboo structure for Durja Purja
Dhiren Patel’s twisting hexagons bamboo structure for Durja Purja
Mark Simpson's Artificial Diamond Funerarium
Mark Simpson’s Artificial Diamond Funerarium

Three-Dimensional Mid-Air Acoustic Manipulation

Lying somewhere between science and art, University of Tokyo scientists Yoichi Ochiai,  Takayuki Hoshi and Jun Rekimoto use precision acoustics to bring the beauty of sound waves to life in three dimensions.

More information here from the University of Tokyo, Nagoya Institute of Technology

Polystyrene beads self organising in mid air

The Nature of Code on Grasshopper

After posting about the book explaining basic concepts of computational design, The Nature of Code by Daniel Shiffman, I thought it would be helpful to convert all the example into Grasshopper files. Well here you go: Jake Hebbert has done it on youtube, exciting tutorials using python for Grasshopper. Here are couple example of tutorials extracted from Jake’s youtube channel:

Walker:

Walker02:

Bouncing Balls:

Gravity between movers:

NEAR UNISON | Burning Man Festival | Black Rock Desert

NEAR UNISON is an installation that allows participants to visualize the harmonic relationships between them. Pairs of sit-on pendulum swings create several large scale harmonographs that scratch drawings onto the surface of the Black Rock Playa. The structure that holds these harmonographs is itself a physical representation of a harmonographic form that can be seen from a distance across the Black Rock Playa.

This slideshow requires JavaScript.


The harmonograph was a 19th century machine that was invented to explore the geometry of sine waves. It was soon developed into a popular parlour room toy that was capable of producing beautiful and delicate drawings simply by mapping the relationship between two swinging pendulums. By changing the lengths of the pendulums, their wavelength and oscillating frequency are changed. When the ratio of these two frequencies is something complex like 35:73, there is no discernible pattern, but as soon as it hits a simple ratio such as 3:5 or 2:3 a clear pattern emerges. The relationship between visual harmony and mathematical ratio is exactly the same those found in musical harmonies: the ratios that produce beautiful drawings are the same as produce harmonious musical chords.

The title ‘NEAR UNISON’ is derived from the set of patterns that occur when the ratio of the two pendulums is very close to 1:1, as will occur when people of a similar weight are using the interactive harmonograph. It is expected that the patterns produced by these interactive harmonographs will describe, in an abstracted manner, the similarity of all human beings, while emphasizing the subtle differences between individuals.

The overall form of the structure is also derived from a 3D harmonographic surface with a ratio that is in this ‘near unison’ region. A plywood structure supports pipes that trace the harmonographic lines through space to create a delicately curved sculptural form that sits directly on the Playa. Suspended from this structure are a series of connected pendulums that participants are able to ride like swings. When they are are used, these pendulums trace harmonographic patterns onto the surface of Playa. The drawings that are created will map the interaction between pairs of participants.

For more infomation please visit www.dandodds.co.uk

Harmonograph | Sand

A series of experiments tracing the movement of a freely oscillating pendulum in a layer of sand.

The pendulum’s centre of gravity is slightly off-centre, meaning that the the x and y components of its movement oscillate at very slightly different frequencies; the harmonic relationship between these frequencies causes remains constant as the amplitude decreases rapidly due to friction between the pendulum and the sand. The rate of decay of the amplitude can be controlled by the depth to when the pendulum penetrates the layer of sand.

Casts of these forms were made by pouring liquid plaster carefully over the sand once it had been held in place with a light coating of sprayed acrylic varnish.

This slideshow requires JavaScript.



For more infomation please visit www.dandodds.co.uk

Harmonograph | Light

A series of long exposure photographs of a light on the end of a freely oscillating pendulum.

The pendulum’s centre of gravity is slightly off-centre, meaning that the x and y components of its movement oscillate at very slightly different frequencies; the harmonic relationship between these frequencies causes remains constant as the amplitude decreases due to friction between the pendulum and the air.

This set up is the most simple form of a harmonograph.

This slideshow requires JavaScript.


For more infomation please visit www.dandodds.co.uk