Final Day Render

INSTALLATION SUBMISSION TO BURNING MAN 2016 – ‘Entwine’

Entwine is a timber frame structure which has been developed through rigorous physical and digital testing to ensure a safe climbing frame for all to enjoy. When exploring Entwine, the vast expanse of the playa is framed through beautiful intertwining curved plywood beams. Burners can view the event from glorious vantage points nestled amidst multiple communal spaces that encourage interaction and play.

The structure predominantly consists of strips of curved plywood which have been connected together using pioneering construction techniques, specifically the utilisation of conflicting forces, similar to those apparent in ‘Tensegrital’ design. Drawing inspiration from Leonardo Da Vinci and his various experimentations with physical form, ‘Entwine’ is a marvel of geometry. The piece is formed from an arrangement of 19 octahedral components, each consisting of six beams, which are paired and positioned upon one of three axis. These three elements represent the unity of man, nature and the universe that surrounds us.

 

Close up Render.jpg

FINAL Night Render

Each modular component is tessellated to form an octahedral space frame structure. The rigidity resulting from this tessellation is in direct contrast to the curving structural beams which exude an organic aesthetic. As Burners view Entwine from different aspects, a remarkable array of different patterns and forms are revealed, many bearing resemblance to sacred geometry, specifically the Flower of Life, which was a significant study within Leonardo Da Vinci’s work.

"DCIM100MEDIA"

Entwine is unorthodox in its composition, and this is a contributing factor to what makes it so unique: Each module is constructed through tensioning layers of ¼ inch thick plywood, which are then mechanically fixed together when a desired radius has been reached. By laminating the plywood in this manner, each component retains its curvature but remains in compression. These conflicting forces are integral to the design of Entwine: Each octahedral module is constructed from these compressed plywood elements, and are held together with tensioning ropes creating a structure of isolated components in compression within a net of continuous tension.MODEL PHOTOGRAPHSMODEL PHOTOGRAPHS 2The form of the structure is based on the octahedron, which is a Platonic solid composed of eight equilateral triangles; four of which meet at each vertex. One of the eight triangles acts as a base for the structure. This results in one edge creating a small cantilever, whilst the counter edge can be anchored to the ground. As previously studied by Buckminster Fuller, the geometry of an octahedron is particularly good at forming space frames with a strong cantilevers.

section.jpg

Entwine Construction Proposal

The participatory aspect of the installation voids the role of the ‘spectator’ and creates more active engagement. In many of Leonardo Da Vinci’s paintings, his subjects are framed by surreal, dreamlike landscapes. This is reflected within Entwine: As Burners become part of the installation, they are framed by the awe inspiring backdrop of Black Rock Desert: In many ways Entwine becomes the artist, the playa the canvas, and Burners the subjects.

“the artist is not a special sort of person, but every person is a special sort of artist.”

This is not only true in the sense of physical involvement but during the construction the ‘spectator’ becomes involved in making strategic decisions in the realisation of the work of art. The development, design and construction of the project embodies the principles of self-reliance and self-expression, whilst a proposal that is safe, interactive and beautiful will be gifted to the community at Burning Man.

Entwine’s curving form will be illuminated using LED spot lights to enhance the organic patterning existent within the structure. This allows the full form of the structure to be fully visible.

“Tell me and I forget, teach me and I may remember, involve me and I will learn.” Xun Kuang (312-230 BC)

WeWantToLearn.net at Burning Man 2015 – A video by Freddie Barrie

“We believe that Architecture should be fun and in giving our students the opportunity to build projects in the real world. We want them to dare to be naïve, curious, and enthusiastic,  to think like makers and to act like entrepreneurs, creating an architecture of joy. Burning Man is the playground for our dreams.” Toby Burgess and Arthur Mamou-Mani, DS10 Studio Leaders, University of Westminster

Team: Toby Burgess and Arthur Mamou-Mani (tutors), Tobias Power (Designer of The Infinity Tree), Jon Leung (Designer of Bismuth Bivouac), Lorna Jackson (Designer of reflection), Maialen Calleja, Andrei Jipa, Josh Potter, Aaron Porterfield, Aigli Tsirogianni, Alex Fotherby, Andrew K Green, Ben Brakspear, Ben lloyd Goldstein, Charlotte Chambers, Deepak Krasner, Eira Mooney, Eliana Stenning, Elizabeth Ripps, Felix Thiodet, Garis Iu, Jack Hardy, Jasmine Low, Jon Goodbun, Lianne Clark, Maria Sobrino, Martin Brien, Matthew Lee, Michelle Tanya Barratt, Neale Shutler, Phil Olivier, Ricky Chandi, Sarah Stell, Toby Plunkett, Tom Jelley, Elan laplain, Innes Shelley, Jake Spruyt, James Abbott, Jasper Sauve, Joe Leach, Julian Sauve, Klina Jordan, Joshua de Matteo, Maria Vergopoulou, Kris Leung, Ben Metcalfe-Penny, Willem Ossorio, Sebastian Sauve, Tim Hornsby, Tim Martin

Engineers: Format Engineering (The Infinity Tree and Bismuth Bivouac) Price & Myers (Reflection)

Special Thanks: BettieJune Scarborough, Ben Stoelting, Brody Scotland, DaveX, Harry Charrington, Thomas Ermacora, Betty Lam and to all our Kickstarter Backers.

Here are some stills extracted from the video:

 

 

 

In the 1970s and 1980s Alan Holden described symmetric arrangements of linked polygons which he called regular polylinks or orderly tangle. The fundamental geometric idea of symmetrically rotating and translating the faces of a platonic solid is applicable to both sculpture and puzzles. 

The process started with making a frame out of the geometry; in this case a cube. All 6 faces are moved inwards with the central point of the original cube is used as the origin axis.

Using the same origin, the faces of the geometry are then rotated along their axis at a certain degree to create the orderly tangle.

The faces are then thicken to ensure all of them fixed together.

post_2

Using the method as stated before, an icosahedron is used and different length of movement and degree of rotation is used to suit the shape.

—————————————————————–

Some images can be scanned using augmented reality apps called Augment.

augment-logo-black

Links to Augment apps:

iOS: https://itunes.apple.com/us/app/augment/id506463171

Android: https://play.google.com/store/apps/details?id=com.ar.augment

—————————————————————–

In this experiment, the edges of the icosahedron is replaced with sine curve. 

post_8 post_9

In this experiment, the edges of the icosahedron is replaced with triangular curve.

post_10 post_11

In this experiment, the edges of the icosahedron is replaced with steps curve.

post_12 post_13

——————————————————–

The icosahedron sine curve edges is used to continue with further design. The original sine curve is manipulated using grasshopper to enable the shape to intertwine through itself and interlock without major intersection. This provide more ways to control the curve and makes it easier to assemble. 

A small model is built to see how it holds together.

post_14

post_15post_16

post_17post_18

——————————————————–

After making the first small scaled model, i started to study on a more efficient jointings needed for the sine curve component as well as the interlocking component needed to connect the face together.

A medium sized model is built with the new jointing design.

 post_19

post_20

 post_21post_22

post_23

——————————————————–

The sine curve polylinks created an icosahedron space on the inside. Each triangle face of the icosahedron corresponds to the sine curve geometry due to the initial process of replacing all the edges with sine curves.

In icosahedron, there is always surface that pairs in a parallel to each other, in this case 10 pairs of the 20 triangle faces. Based on this, i tried to use the surface as a floor plate for the structure. The whole geomtery is rotated so that one of the surface lays flat on the ground. The excess part is then removed.

The section shows the space inside with one of the triangle face acts as a floor plate.

post_24

post_25

—————————- EXPERIMENTS —————————-

Different experiments were carried out using the system as the basis for design. The experiments focus more on a different form other than the spherical nature of the system.

In this experiment, the polylinks is divided into two halves (each half contains 10 modular shape) and the bottom half is move to the side on the x- axis while still intertwine with the top half portion. Due to the adjustment, the bottom half is also slightly moved up on the z-axis to ensure no major intersection. This creates a more elongated structure with the system still intact. The process is repeated with each time the geometry still intertwine between the top and bottom half.The process is then repeated along the y-axis to create a planar design based on the shape.

post_26 post_27

post_28 post_30

——————————————————–

In this experiment, the polylinks is divided into two halves (each half contains 10 modular shape) and the bottom half is removed. The top half contains two component face that is in the same plane but different angle. These two will be used as a sharing planes to array the whole structure. The top half structure is then copied to the adjacent with the parallel face is lined up. The structures will intertwine at the sharing planes helping it to stay in place. The process is repeated with each time the geometry still intertwine at the sharing planes on each iteration.

post_31 post_32

——————————————————–

In this experiment, using one of the component face as a floor plate, the structure is rotated to lay the component face on the floor and all the excess (bottom) are removed. The opposite component face, which is in parallel to the one used as floor plate, will be used as the second floor plate. All the excess (top) are removed as well. The structure is then mirrored along the x and y plane to get a tower shape structure. The trimmed part where the excess are removed will connect with the new mirrored structure making them all connected.

post_34 post_35

—————————- BURNING MAN PROPOSAL —————————-

Desert Petal

bm03

bm04

bm02

bm01

Exploded and Elevation

In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the same number of faces meeting at each vertex. Only five solids meet these criteria, and each is named after its number of faces.

Named after the ancient Greek philosopher, Plato, who theorised in his dialogue, the Timaeus (360BC), that the classical elements were made of these regular solids. It was thought that they represented the five basic elements of the world; earth, air, fire, water, and the universe.
 
If it not required for polyhedra to be convex, there are four more regular solids. In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. These can be created through the stellation of the regular convex dodecahedron and icosahedron, and differ from these forms due to their regular pentagrammic faces or vertex figures. Together, the Platonic solids and the Kepler-Poinsot polyhedra form the set of 9 regular polyhedra. It was Augustin Cauchy who first proved that no other polyhedra can exist with identical regular faces and identical regular vertices in 1859. The small and great stellated dodecahedra, sometimes called the Kepler polyhedra, were first recognised as regular by Johannes Kepler in 1619. In 1809, Louis Poinsot rediscovered Kepler's figures, by assembling star pentagons around each vertex. He also assembled convex polygons around star vertices to discover two more regular stars, the great icosahedron and great dodecahedron.
3 Stellation is the process of constructing polyhedra by extending the facial planes past the polyhedron edges of a given polyhedron until they intersect (Wenninger 1989). Starting with an original figure, the process extends specific elements such as its edges, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. 4
The stellation diagram below shows a face plane of an icosahedron (the inner triangle), giving the lines of intersection with the other face planes. The lines define the edges of the various stellations. 5 A polyhedron is stellated by extending the edges or face planes of a polyhedron until they meet again to form a new polyhedron or compound. The interior of the new polyhedron is divided by the faces into a number of cells. The face planes of a polyhedron may divide space into many such cells, and as the stellation process continues then more of these cells will be enclosed. For a symmetrical polyhedron, these cells will fall into groups, or sets, of congruent cells. A set of cells forming a closed layer around its core is called a shell. For a symmetrical polyhedron, a shell may be made up of one or more cell types. 5a 5b 6 7 In the book ‘The Fifry-Nine Icosahedra (1938), H.S.M. Coxeter, P. Du Val, H.T. Flather and J.F. Petrie illustrated and catalogued the complete set of the stellation of the icosahedron – in accordance to a set of rules put forward by J.C.P. Miller. These stellations are demonstrated in the following pages.
8 9 10 11 12 13 14 15

All living organisms are composed of cells, and cells are fluid-filled spaces surrounded by an envelope of little material- cell membrane. Frei Otto described this kind of structure as pneus.

From first order,  peripheral conditions or the packing configuration spatially give rise to specific shapes we see on the second  and third order.

This applies to most biological instances.  On a larger scale, the formation of beehives is a translated example of the different orders of ‘pneu’.

Interested to see the impact of lattice configuration on the forms, I moved on to digital physics simulation with Kangaroo 2 (based on a script by David Stasiuk). The key parameters involved for each lattice configuration are:

Inflation pressure in spheres
Collision force between the spheres
Collision force of spheres and bounding box
Surface tension of spheres
Weight.

 

Physical exploration is also done to understand pneumatic behaviors and their parameters.

This followed by 3D pneumatic space packing. Spheres in different lattice configuration is inflated, and then taken apart to examine the deformation within. This process can be thought of as the growing process of seeds or pips in fruits such as pomegranates and citrus under hydrostatic pressure within its skin; and dissections of these fruits.

As the spheres take the peripheral conditions, the middles ones which are surrounded by spheres transformed into Rhombic dodecahedron, Trapezoid Rhombic dodecahedron and diamond respectively in Hex Grid, FCC Grid,  and Square Grid. The spheres at the boundary take the shape of the bounding box hence they are more fully inflated(there are more spaces in between spheres and bounding box for expansion).

   

Physical experimentation has been done on inflatables structures. The following shows some of the outcome on my own and during an Air workshop in conjunction with Playweek led by Will Mclean and Laylac Shahed.

To summarize, pneumatic structures are forms wholly or mainly stabalised by either
– Pressurised difference in gas. Eg. Air structure or aerated foam structures
– liquid/hydrostatic pressure. Eg. Plant cells
– Forces between materials in bulk. Eg. Beehive, Fruits seeds/pips

There is a distinct quality of unpredictability and playfulness that pneumatic structures could offer. The jiggly nature of inflatables, the unpredictability resulted from deformation by compression and its lightweightness are intriguing. I will call them as pneumatic behaviour. I will continually explore what pneumatic materials and assembly of them could offer spatially in Brief 02. Digital simulations proved to be helpful in expressing the dynamic behaviours of pneumatic structures too, which I intend to continue.

Thousand Line Construction :

Hamish Macpherson

A spatial exploration into the interplay of materials, construction techniques, and delicate and precise design.

Inspired by Hanakago; the craft of Japanese Bamboo basketry, to celebrate the western discovery of tea and its associated culture during the renaissance.

Page 1

Page 13

Page 14

Page 15

Page 16

Page 17

Page 18

Page 19

Page 110

Page 111

Page 112

Page 113

Page 114Page 115
Page 116

Page 117

Page 118

Page 119

Page 120

Page 121

Page 122

232425

 

 

 

 

 

Follow

Get every new post delivered to your Inbox.

Join 6,196 other followers