2021-2022 BRIEF: ECO-PARAMETRIC ARCHITECTURE

At the start of the year, coupled with Grasshopper training we will be looking at lattices as a granular spatial organising principle. From molecular systems to quasi-crystals, nature organizes itself through space efficient, resilient and complex arrangements.


We’re back!!!

ECO-PARAMETRIC ARCHITECTURE

Excited to share with you our new brief:

A4 BRIEF
Studio Intro Slides

Brief 01: 3D Lattices/ Urban Crystallography & Self-Sufficient Bio-Machines:
At the start of the year, coupled with Grasshopper training we will be looking at lattices as a granular spatial organising principle. From molecular systems to quasi-crystals, nature organizes itself through space efficient, resilient and complex arrangements. We would like to start the year with a study of all these three-dimensional systems as an exercise to understand the many ways structures can be arranged in space. Using timber struts and nodes, or surfaces and hinges, whether defining space packing volumes or porous three dimensional grid shells, the modularity of the systems allows us to work at all scales. However for the first brief we expect you to design and build a self-sufficient small scale bio-machine interacting with the given sites. Like a tree absorbing carbon whilst creating timber and fruits, your architectural system will be a blend of technology and nature in the urban context.

Ghee Beom Kim‘s 3D lattice
A Cascade of Water Over Terra Cotta Tubes Functions as a Beautiful  Low-Energy Air Conditioner | Colossal
 Ant Studio‘s clay air conditioning alternative

Brief 02: Eco-Parametric Urban Infrastructures to combat climate change
Nature does not make waste, everything is reused and feeds back into the system. DS10 will learn from this by applying the principles of permaculture, regenerative agriculture and renewable energy generation to propose Eco-Parametric Urban Infrastructures. You will design and test large scale infrastructures tightly interwoven into and above the urban fabric of London’s train tracks which immersively integrate nature into the city using your 3D lattices as a reference.  We are seeking new architectural ideas which address energy needs in the age of the circular economy. Your mixed use infrastructure will create energy and deal with its waste to close the loop whilst helping people live better and healthier lives and create an economy in the process. Proposals may include self sufficient communities and economies, cradle to cradle business ideas, inhabited bridges forging connections between different sides of the tracks and structures which actively contribute to the area such as carbon capture devices, solar collectors, pollution scrubbers etc,

 Zainab Kahn, The Spirulina Bank

Site: The underused spaces over the existing railway tracks of central London will form the foundations for exciting large scale mixed use structures, creating new connections and a new hyper dense and hyper sustainable urban fabric.

Output: Rather than a traditional paper portfolio we will focus on digital representation techniques such as animations, high quality digital renders which explain the process of your work. You will become a member of the WeWantToLearn.net community (1.7 million viewers) sharing your research and studio submissions to inspire and contribute to the wider design community. Blog posts will form part of your portfolio submission.

ECO PARAMETRIC YOUTUBE CHANNEL:
https://youtube.com/playlist?list=PL-4o26NPHVJC2sNHob8G_RDYxL6lZVhhr

Zainab Kahn, The Spirulina Bank
Nikola Wolkova, Rewilding Tensegrity
This year’s site: London’s Train Tracks

Waste Recycling Tomato Pods

Is waste the future?

With climate change and the world turning to new sustainable alternatives of producing energy and recycling materials, we as designers should be thinking of new ways of reusing waste and using resources available to us. Human waste has many uses and should not just be flushed down the toilet and sent away to the sewers. It should be returned back to the soil with all it’s nutrients to help grow food, instead of the use of chemical fertilisers.

Both urine and faeces are useful resources in their own ways but have to be separated out. I have designed a toilet and system which splits the two.

Human excrement if kept in anaerobic conditions in a sealed container will start to produce methane. The higher the temperature, the faster the material decomposes, and the higher the rate of production of methane gas. This methane can be used as an energy source.

Urine can be diluted to make a natural fertiliser which should be applied directly to the root system of the plant. It is best to do this immediately or within 24 hours to ensure that ammonia is not released which causes it to smell. However animals will be able to detect the smell and hence it acts as a natural animal repellent.

Urine fertiliser is particularly beneficial for plants which require a lot of nitrogen to grow like tomato plants.

I was inspired by the unusual, striking form and scale of the baobab trees, native to Africa. They are sometimes referred to as “the upside down tree”. They swell up drawing in all the water they can, storing it inside their trunk like a water tank, to ensure they will survive in the dry months.

I explored ways of achieving this swelling geometry on Grasshopper, and used the plugin called Fattener to grow the shape in different areas, controlled by separate parameters.

I then unravelled this radial shape, and tested other options to see which one received the most sunlight all year round.

The toilet pods needed to have the right balance between privacy for the users, and receiving the most sunlight for the tomatoes. I used expressions on Grasshopper to cull the faces of the mesh in a certain way to make sure the parts of the pods that you could see into were made from timber, and the other parts would be made from bio-polycarbonate to let in sunlight for the tomatoes.

Instead of this stepped geometry achieved from culling faces, I added veining with the new Rhino 7 multipipe tool and separated the geometry this way.

Using the plugin Anemone with Grasshopper, I analysed the how the rain would fall on the pods and the overhang to collect rainwater to mix with the urine to then fertilise the tomato plants.

HORTICULTURAL HERITAGE, INHABITED

Plant rich diets & agroforestry are methods to reverse global warming from Drawdown. This project returns Plant Trade heritage to Docklands through Wardian Terrariums, self-sustaining microclimates that aid plant growth from all hemispheres. Fruit, veg & herbs are home grown within high-rise greenspaces. Inspired by the photosynthetic properties of coral, the buildings plants grow symbiotically with controlled levels of sunlight, energy, temperature & moisture.

SITE: DOCKLANDS, LONDON

Rotherhithe has been selected as the site for brief 1, with Beckton as the site for brief 2. Both sites are located in Docklands.

Rotherhithe, South west London, is currently under planning with proposals to build a multi-use housing development around the gasometer. In 2019, the Rotherhithe Gas Holder company opened a temporary Hub to receive resident feedback for the planned development. Lots of feedback was in relation to the heritage of Rotherhithe, with residents requesting the history of the site is maintained and celebrated.

The name ‘Rotherhithe’ derived from the Latin translation of ‘Landing place’, as it was part of the Docklands trade, with raw materials and goods being imported to the site via ships from around the world. The proposed artefact re-creates native climates from all hemispheres for native & imported plants that grow herbs, fruits, spices and botanicals.

Rotherhithe Warehouse, 1960

THE CLIMATE CRISIS: CORAL REGENERATION

Taking inspiration from the death of a coral skeleton after bleaching, the artefact is based on a replicated ‘mesh’ aspect of strong and resilliant branching coral.

DIGITAL EXPERIMENTATION

Taking the resillience of a coral mesh, I have experimented on Grasshopper with different methods of creating the initial design concepts of my artefact. The mesh will act as a supportive shell, with plants integrated throughout.

MESH TO STRUCTURE

The Grasshopper experiments are transformed into various containers based on the concept of Wardian Cases, providing various moisture, light and temperature conditions for each individual plant.

Brief 2:

HERITAGE, HORTICULTURE & HYPERBUILDS

Reviving the Docklands Plant Trade heritage through Wardian Cases

This project celebrates our scientific movements away from the industrial era through our ability to re-create self-sustaining climates for plants.
The discovery of the Wardian Case- the original terrarium, demonstrates a simple yet powerful ability to re-create its own self-sustaining climate, allowing biodiversity to grow & thrive. Docklands was the largest importer of raw materials including plants, herbs, fruits, veg & many more in the world.

‘Bio’, with the latin meaning ‘organic life’, is becoming increasingly considered through trends such as biophilia, biomimicry and biomorphism. The Biosphere (Earth), must have such trends prioritised at the forefront of design in order to help keep our planet inhabitable. Drawdown: The most comprehensive plan ever proposed to reverse global warming, is an intricately researched document on our top 100 most effective methods of reducing and reversing the climate crisis The document covers all issues concerning global warming from family planning/population control to refridgeration, plant-based diets, and organic material usage. Some of the most effective topics have been applied to my proposal are:


• Regenerative farming
• Plant rich diets
• Educating girls
• Solar energy
• Mass organic food production

The fully self-sustaining multi-functional arcological hyper building incorprates public spaces such as horticultural education, plant nurseries & labs that breed native & endangered plants, & informative public exhibitions, along with residential sectors that offer organic food farming inspired by the Wardian Case Terrariums.

Drawdown summarises ways to help reverse global warming. Regenerative farming, plant rich diets, biodiversity & permacultire are some Drawdown methods that I have incorprated into my project. Below is a full list of the methods I have included, and individual summaries of why these methods have been incorprated into my residential biodiverse tower.

The man-made cocoon

A man-made cocoon woven from biodegradable rope material inspired by
the weaving of silkworms. It can be constructed in any softwood tree that
is strong enough and that has a convenient distribution of branches. The
tree is scanned and converted into a 3D model where a custom cocoon design
is created. The cocoon is both lightweight and strong as it is a tensile
structure (secondary structure) wrapping around a tree (primary structure).
It aims to bring people from the city closer to nature.

Trees & Humans

The following images will introduce my artefact into wider context. There are two possible scenarios, which could benefit from my artefact, one of which will be further developed in the upcoming term:
1) forest bathing as a way to for the human to reconnect with nature
2) rewilding as a way to both regenerate the land and human spirit

Photogrammetry

OBJECTIVE
The aim of photogrammetry was to create the most realistic three-dimensional representation of a tree, which could then be incorporated into computational experiments making the design process much more efficient.

LIMITATIONS
Photogrammetry generated about 60-70% of tree volume leaving out the detailed branches at the outer ends of the tree. 3D scanning would be a possible solution, however, unavailable at the moment.

Combining the Virtual and Real

REAL
3D-model of a real tree
VIRTUAL
wrapping/weaving around the 3D-model of a real tree virtually

Connecting points in space

OBJECTIVE
This section of my portfolio focuses on exploring the ways in which points can be connected with strings – in both two and three dimensions. The gained knowledge from this section informed my virtual weaving experiments (previous section)


LIMITATIONS:
When connecting regular geometries, it is much easier to find the differences between different connection techniques. The result looks also much more organised and neat. However, what I am aiming to do is apply these connection techniques to irregular geometries of trees, which is a big challenge.

Wrapping & weaving around real trees

This part tracks my learning of the weaving behaviour of silkworms. I have done my own weaving experiments, both physical and virtual to try and understand how weaved tensile structures work. Going forward, I would like to incorporate some of the observed physical principles into my design (into the Grasshopper script).

The Living Fabric Tower

Brief 01
How do natural structures and organisms interface with their environment? We seek an architectural language that relates to and speaks to the natural world rather than standing apart from it, by designing a performative urban modular Artefact that brings living nature into the city. The Artefact will be highly site specific, half man-made and half grown from nature.

Chosen Area of Interest – Fungi / Mycelium

Fungi absorb nutrients through vast underground networks of white branching threads called mycelium. Though hidden in the soil and sometimes mistaken for roots, mycelium is actually the proper body of a fungus. Mushrooms are the fruit, appearing only when conditions for spreading their spores are just right.

Mycelium plays a vital role in the decompositon of plant material but also can form a symbiotic relationship with the roots of cer­tain plants, called mycorrhiza. Most plants depend on mycorrhiza to absorb phosphorus and other nutrients. In exchange, fungi gain constant access to the plants carbohydrates. Often, neither the mushroom nor the plant will grow without a mycorrhizal partner.

Brief 2020-2021

“Now is our chance to recover better, by building more resilient, inclusive & sustainable cities.” António Guterres, Secretary-General of the United Nations.

We are very excited to be back for a new year. This year our brief is focused on Arcology, a term coined by Paolo Soleri which is the combination of Architecture and Ecology. Below is a few links describing the year ahead:

The DS10 A4 brief
The DS10 Diploma Studio Presentation


Sustainability first! DS10 looks for novel solutions to sustainability issues in all its forms. We are interested in realistic and efficient buildings that contribute to a more sustainable society. We value digital exploration on the threshold between structure and biophilic ornament, coupled with thorough material testing DS10 believe that architecture should be joyful and that architects should think like makers and act like entrepreneurs. We like physical experiments tested with digital tools, for analysis, formal generation and fabrication.

Our past students have raised funds on Dragons Den and won StartUp Awards
Our Reading List
We will be studying pioneers of eco-design
Eliza Hague’s Shellac Coated Inflatable Origami Greenhouse
By ecology we understand the total science of the connections of the organism to the surrounding external world. -Ernst Haeckel
“Nature is painting for us, day after day, pictures of infinite beauty if only we have the eyes to see them.” ― John Ruskin
Through dedicated digital classes in Grasshopper we will be exploring structural ornamentation techniques such as floral and vegetal motifs through the ages, filigree ironwork, spiralling and curving volutes, stone scrollwork, and replicating, evolving and reappropriating them digitally and physically.

Arcology is a combination of architecture + ecology creating an ever evolving large scale, dense and highly compacted building.
Abanoub Reyad and Yvonne Onah
Urna Uranga
Jessmine Bath
This year’s site
Biosphere 2

Inflatable origami greenhouses – self sufficient living in Jaipur

Meat consumption globally is ever increasing, especially in countries which are experiencing rapid increases in wealth such as India. Despite its population consisting of 337 million vegetarians, 71% of people living in India have a meat based diet. The amount of land required to produce meat is extremely more than the amount required to produce vegetarian food products. If crops are grown in greenhouses they require even less space, as the growing seasons can be extended and environmental factors controlled. This highlights how switching to a greenhouse-grown plant based diet has massive spatial advantages and is an efficient use of land.

There is also a huge incentive from the Indian government to encourage those who work in agriculture to use greenhouses rather than open land to grow their crops to increase reliability of harvest and income. However, the most popular greenhouse covering material in India is polyethylene sheeting, which needs replacing annually. This adds to the enormous amount of plastic waste which ends up in India’s open environment (85% of all plastic waste).

The site is located on the outskirts on Jaipur, Rajasthan, and is situated in existing agricultural land, adjacent to two poly tunnel greenhouses. The craft and paper manufacturing area of Sanganer sits just East of the site, which houses several paper production facilities using local raw materials like hemp and bamboo.

When researching alternatives to polyethylene sheeting, paper was investigated as a cladding material – it is cheap, lightweight, translucent and can be locally manufactured using raw materials such as bamboo fibers to increase its strength. To make the paper more weather-resistant, I sourced shellac resin flakes (a natural resin found on trees in India) and mixed a coating to apply to the paper.

Shellac coating mix process
Shellac coating on bamboo paper

To test the moisture resistance of the shellac coating, water is poured into a pool on the paper and left to soak. The water is not able to penetrate the surface of the paper and the underside of the paper is completely dry. Water runs off the paper without soaking through the sheet.

The coating also bonds to the fibers in the paper which increases its transparency. This is beneficial in the application of a greenhouse covering.

Inflatable origami air beams

Following from the inflatable origami studies for Brief 1 (see previous post), the paper origami modules are combined to create inflated beams for the greenhouse. The video below shows an initial study of the inflation sequence of the beams.

The air beams are modeled up digitally to test their form variations. The bottom right form allows for an increase in depth, creating more varied spaces beneath the beams and more opportunities for longer beam spans.

To test the air beams at a larger scale, I constructed a 1.8m wide model. I then used this to analyse its structural stability, and identify any weaker points in the beam.

The origami beam will arrive to the site pre-folded where it is then inflated, increasing ease of transportation.

Origami air beam unfolding sequence
Origami air beam not inflated

Infill beams and cladding system

The infill beams sit within the main air beams to provide a structure for the facade. These infill beams are constructed using the same method as the larger beams and provide support for the reactive facade system.

Passive facade

Origami hinge balloons (developed during Brief 1) are treated with a black coating and tightly sealed. The black coating allows the balloons to absorb more heat, rapidly expanding the air within the balloon when they are exposed to intense heat from the sun. This test was carried out using the same temperatures in Jaipur during summer months.

Time lapse of solar balloon replication, the variation of heat determining the rate of expansion

The solar balloon is attached to a fin, and acts as a hinge. This will be used as a passive way to open and close the greenhouse facade to control intense over-heating in summer and ventilation.

Coated paper facade fins which open when the solar balloons are heated by the intense Jaipur sun. This ventilates and cools the greenhouse down in extreme weather conditions.

Facade opening sequence

Community farming

The greenhouses will be shared by multiple families and will provide each family member with enough food to be self-sufficient. Communal farming is becoming more common in India – growing crops using the same resources and centralising power supplies to increase efficiency. In addition to this, many rural villages in India are forced to be self-sufficient due to a lack of connection to resources. My project will aim to combine these characteristics to create a communal self-sufficient greenhouse village in South Jaipur.

Each greenhouse will have a series of connected homes which open into the greenhouse. These will be constructed from rammed earth – the thermal mass of this material will help to prevent overheating during the summer in Jaipur’s arid climate, whilst retaining heat during winter months. The geometries of these homes relate to the form of the greenhouse, and are constructed from single curvature faces.

Each individual requires 40m2 of greenhouse space to grow enough food to maintain a self -sufficient diet. The above matrix displays the possible greenhouse typologies based on 2 person, 3 person and 4 person homes.

2 person home example

Home typologies
Existing agriculture land on site

Radiation study, Jaipur

The Corn-Crete House System

The main aspects of the Corn-Crete House system are the use of space, material efficiency and relationship to site. The way space is shaped influences human behaviour. According to a research paper done by KAYVAN MADANI NEJAD in 2007 the curvilinearity of interior design directly affects the way people feel inside them. It concluded that the more curvilinear a space is the more comfortable, safe, relaxed and friendly it feels. My project builds upon this argument. Research also shows that the concrete industry is a major environment pollutant. Cement is the most damaging ingredient. I am proposing a new system which will be using less concrete & less cement thanks to: 1) corn residues partially replacing aggregate making the structure lighter and more porous 2) casting around inflatables resulting in curvilinear architecture suitable for compression which requires less tensile strength.

Floating Azolla Farmhouses – Circular Agriculture & Living in Rotterdam

WHAT IS AZOLLA?

Azolla is a minuscule floating plant that forms part of a genus of species of aquatic ferns, also known as Mosquito Fern. It holds the world record in biomass producer – doubling in 2-3 days. The secret behind this plant is its symbiotic relationship with nitrogen fixing cyanobacterium Anabaena making it a superorganism. The Azolla Provides a microclimate for the cyanobacteria in exchange for nitrate fertiliser. Azolla is the only known case where a symbiotic relationship endures during the fern’s reproductive cycle and is passed on to the next generation. They also have a complimentary photosynthesis, using light from most of the visible spectrum and their growth is accelerated with elevated CO2 and Nitrogen.

Azolla is capable of producing natural biofertiliser, bioplastics because of its sugar contents and biofuel because of the large amount of lipids. Its growth requirements can accommodate many climates too, allowing it to be classified as a weed in many countries. I was able to study the necessary m2 of growing Azolla to sequester the same amount as my yearly CO2 emissions, resulting in 57% of a football field equivalent of growing Azolla to make me carbon neutral.

Why is this useful? Climate change will inevitably bring more adverse climate conditions that will put many world wide crops at risk and, as a consequence, will affect our lives. A crop that produces biomass at the speed of Azolla provides at advantage in flexibility: a soya bean can take months to grow until ready to be harvested, Azolla can be harvested twice a week. This plant has the potential to be used in the larger agricultural sector and diminish the Greenhouse Gas Emissions of one of the most pollutant sectors.

.

REAL LIFE ACTION

I contacted the Azolla Research Group at the University of Utrecht and they kindly accepted to give us a tour of their research facilities, providing us with an in-depth insight into the aquatic fern. I also decided to approach the Floating Farm with a proposal of using Azolla in their dairy process. They agreed to explore this and I put them in contact with the research team in the University of Utrecht, who are now cooperating with the dairy farm’s team in decreasing the carbon emissions of the cows on the farm.

.

ARCHITECTURAL PROPOSAL

Floating Azolla District Masterplan

The Floating Azolla District consists on a proposed community that emphasises a circular economy with a focus on sustainable agriculture in Rotterdam. It builds on to the existing Floating Farm found in the M4H area. It is formed of three areas:

1) Azolla – Dwellings combining a series of residential units for the increasing number of young entrepreneurs in the RID with three central cores growing stacked trays of Azolla as in vertical farming.

2) The Floating Farm which continues to produce dairy products and a Bamboo growing area to maintain the upkeep of floating platforms and construction of new dwellings. Floating rice paddies are grown in the warmer months in a closely monitored system of permaculture.

3) A production facility which concentrates on research and development into Azolla as well as retrieving the water fern’s byproducts such as bioplastics extracted from the sugars; biofuel, from the lipids; and bamboo plywood lumber for the construction of the expanding Floating District.

Dwellings
Floating Farm
Bamboo Growing Pods
Closed System in the Floating Azolla District

Floating Azolla District – Dwellings

Floating Azolla District – Dwellings

This section concentrates on the detail construction of the Azolla-Dwellings. These floating units are designed to be used as a combination of co-housing for entrepreneurs working in the Rotterdam Innovation District, where the Floating Farm is located, and indoor Azolla growing facilities which is then used further along in the masterplan. The growing areas are built on a series of building components that provide support for trays of Azolla to be grown in a vertical farming manner and provide support for the floor plates as well as anchoring for the entire dwelling.

Dwellings Construction Sequence
Exploded Axo – Dwellings

The materials are a combination of local bamboo grown on a series of floating platforms that prevent the cold winter winds from affecting the overall masterplan and pallets sourced from neighbouring industrial facilities. Using the reciprocal building system developed in Brief 1, a series of stacked components are linked to form the vertical farming support for the Azolla. This system is then extended to support the floors for the dwellings.

Azolla Vertical Farming Support

Similar to an aperture ring on a camera, this mechanism uses the varying tide to automatically collect the Azolla from the vertical farming trays to then be used throughout the Masterplan. By displacing 2.5% of the area for each tray every tidal change, this mechanism collects 50% of the harvest every 10 days allowing for a continuous growth of Azolla.

Azolla Collection Mechanism
Azolla Vertical Farming Trays and Floor Support
Azolla Vertical Farming Trays and Floor Support

The dwellings’ facade is a result of a careful analysis of harmful and beneficial solar radiation. By setting an initial average temperature to monitory, the facade will block sun that naturally would drive the temperature above the chosen one and the beneficial would bring the temperature up. This shading serves a buffer zone that surrounds the internal living spaces and is used to grow vegetables for the residents.

Thermal Responsive Facade Options.

Semi-public spaces are located on the ground floor (open plan kitchen and living) and bedrooms are located on the first floor, surround a central spiral staircase for circulation.

Ground Floor Plan
First Floor Plan
Exterior View
Interior View

The same building system based on reciprocal structures is coated in azolla bioplastic preventing the wood from rotting and making the form waterproof. These are used as underwater columns which allow the dwellings and platforms to float. Each ‘column’ can support a load of 2011Kg.

Support Floating Columns

SITE LOCATION

Floating Farm Rotterdam

Based on relationship between the University of Utrecht and the Floating Farm taking place outside the initially academic intention of the visit, I decided to use the Floating Farm as a site and a starting point for my proposal. The floating farm is intended to stand out and create an awareness of the possibility or idea of living on water and taking ownership of one’s food production, which seems to match the potential uses and benefits of Azolla. The researchers at the University of Utrecht expressed their need of getting the advantages of this plant to a wider public and this remained in my mind, possibly being the main reason behind my approach to the Floating Farm.

The Floating Farm sits in the Merwehaven area or M4H in the Port of Rotterdam. Highlighted below are the natural site conditions that determined the placement of the masterplan parts according to their function. Bamboo growing pods are placed southwards of the port to block the winter wind while allowing the summer winds from the west to navigate through.

Site Study

In 2007, Rotterdam announced its ambition to become 100% climate-proof by 2025 despite having 80% of its land underwater, therefore it was important to look at the flood risk and tidal change. The Merwehaven area in Rotterdam seems to have an average tidal change of 2 metres which I thought could be taken advantage of in a mechanical system mentioned previously.

Tidal Changes in the Floating Farm Rotterdam
Flood Risk & Tidal changes in Rotterdam

.

BUILDING SYSTEM & MATERIAL RESEARCH

The reciprocal building system used in the construction of the dwellings began by looking into the Fern plant and its’ form. All ferns are Pinnate – central axis and smaller side branches – considered a primitive condition. The veins never coalesce and are known to be ‘free’. The leaves that are broadly ovate or triangular tend to be born at right angles to the sunlight.

Reciprocal Fern Building System

I then decided to model a leaf digitally, attempting to simulate the fractal nature found in a fern frond and the leaves to 3 degrees of fractals. I then simplified the fern frond to 2 levels to allow for easier laser cutting and structural stability. The large perimeter meant, therefore, there was a large amount of surface area for friction so I explored different configurations and tested their intersections.

Iteration 1 Component Study

I then selected the fern frond intersection I found to show the best stability out of the tested ones shown previously. By arraying them further, they began to curve. When pressure is applied to the top of the arch, the intersections are strengthened and the piece appears to gain structural integrity.

Iteration 2 Double Curvature Study

When a full revolution is completed, the components appear to gain their maximum structural integrity. Since I had decided to digitally model the fern frond, I was able to decrease the distance between the individual leaves in the centre of each frond through grasshopper. By doing this, the intersections connecting a frond with another were less tight in the centre than on the extremities of each frond, allowing for double curvature.

Iteration 2 Double Curvature Study – Stress Test
Iteration 2 Double Curvature Study – Stress Test Findings

I continued to iterate the leave by decreasing any arching on the leaf and finding the minimum component, the smallest possible component in the system. By arraying a component formed of 3 ‘leaves’ on one hand and 2 on the other, I would be able to grow the system in one direction as before due to the reciprocal organisation and in the other direction by staggering the adjacent component. The stress tests of this arrangement showed a phased failure of the ‘column’. Instead of breaking at once, row by row of components failed with time, outwards-inwards.

Iterations 3, 4, 5 Minimum Building Component
Iteration 5 Minimum Building Component – Stress Test
Iteration 5 Minimum Building Component – Stress Test Findings

I extracted the minimum possible component from the previous iterations and attempted to merge the system with firstly, 3d printed PLA bioplastic components and then with an algae bioplastic produced at home. I became interested in the idea of being able to coat the wood in an algae bioplastic substituting the need for any epoxy for waterproofing. The stress tests for this component showed a surprising total of 956 kg-force for it to fail.

Agar Bioplastic Test

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Agar Bioplastic Tensile Test

For additional information please visit:

http://www.pteridomania.co.uk/