The Nature of Gridshell Form Finding

Grids, shells, and how they, in conjunction with the study of the natural world, can help us develop increasingly complex structural geometry.

Foreword

This post is the third installment of sort of trilogy, after Shapes, Fractals, Time & the Dimensions they Belong to, and Developing Space-Filling Fractals. While it’s not important to have read either of those posts to follow this one, I do think it adds a certain level of depth and continuity.

Regarding my previous entries, it can be difficult to see how any of this has to do with architecture. In fact I know a few people who think studying fractals is pointless.

Admittedly I often struggle to explain to people what fractals are, let alone how they can influence the way buildings look. However, I believe that this post really sheds light on how these kinds of studies may directly influence and enhance our understanding (and perhaps even the future) of our built environment.

On a separate note, I heard that a member of the architectural academia said “forget biomimicry, it doesn’t work.”

Firstly, I’m pretty sure Frei Otto would be rolling over in his grave.

Secondly, if someone thinks that biomimicry is useless, it’s because they don’t really understand what biomimicry is. And I think the same can be said regarding the study of fractals. They are closely related fields of study, and I wholeheartedly believe they are fertile grounds for architectural marvels to come.

7.0 Introduction to Shells

As far as classification goes, shells generally fall under the category of two-dimensional shapes. They are defined by a curved surface, where the material is thin in the direction perpendicular to the surface. However, assigning a dimension to certain shells can be tricky, since it kinda depends on how zoomed in you are.

A strainer is a good example of this – a two-dimensional gridshell. But if you zoom in, it is comprised of a series of woven, one-dimensional wires. And if you zoom in even further, you see that each wire is of course comprised of a certain volume of metal.

This is a property shared with many fractals, where their dimension can appear different depending on the level of magnification. And while there’s an infinite variety of possible shells, they are (for the most part) categorizable.

7.1 – Single Curved Surfaces

Analytic geometry is created in relation to Cartesian planes, using mathematical equations and a coordinate systems. Synthetic geometry is essentially free-form geometry (that isn’t defined by coordinates or equations), with the use of a variety of curves called splines. The following shapes were created via Synthetic geometry, where we’re calling our splines ‘u’ and ‘v.’

A-Barrel-Vault
Uniclastic: Barrel Vault (Cylindrical paraboloid)

These curves highlight each dimension of the two-dimensional surface. In this case only one of the two ‘curves’ is actually curved, making this shape developable. This means that if, for example, it was made of paper, you could flatten it completely.

B-Conoid

Uniclastic: Conoid (Conical paraboloid)

In this case, one of them grows in length, but the other still remains straight. Since one of the dimensions remains straight, it’s still a single curved surface – capable of being flattened without changing the area. Singly curved surfaced may also be referred to as uniclastic or monoclastic.

7.2 – Double Curved Surfaces

These can be classified as synclastic or anticlastic, and are non-developable surfaces. If made of paper, you could not flatten them without tearing, folding or crumpling them.

C-Dome.gif
Synclastic: Dome (Elliptic paraboloid)

In this case, both curves happen to be identical, but what’s important is that both dimensions are curving in the same direction. In this orientation, the dome is also under compression everywhere.

The surface of the earth is double curved, synclastic – non-developable. “The surface of a sphere cannot be represented on a plane without distortion,” a topic explored by Michael Stevens: https://www.youtube.com/watch?v=2lR7s1Y6Zig

D-Saddle.gif
Anticlastic: Saddle (Hyperbolic paraboloid)
This one was formed by non-uniformly sweeping a convex parabola along a concave parabola. It’s internal structure will behave differently, depending on the curvature of the shell relative to the shape. Roof shells have compressive stresses along the convex curvature, and tensile stress along the concave curvature.
Pringle
Kellogg’s potato and wheat-based stackable snack
Here is an example of a beautiful marriage of tensile and compressive potato and wheat-based anticlastic forces. Although I hear that Pringle cans are diabolically heinous to recycle, so they are the enemy.
11 Tensile and Compressive behaviour of shells.jpg
Structural Behaviour of Basic Shells [Source: IL 10 – Institute for Lightweight Structures and Conceptual Design]

7.3 – Translation vs Revolution

In terms of synthetic geometry, there’s more than one approach to generating anticlastic curvature:
E-Hyperbolic-Paraboloid-Saddle.gif
Hyperbolic Paraboloid: Straight line sweep variation

This shape was achieved by sweeping a straight line over a straight path at one end, and another straight path at the other. This will work as long as both rails are not parallel. Although I find this shape perplexing; it’s double curvature that you can create with straight lines, yet non-developable, and I can’t explain it..

F-Hyperbolic-Paraboloid-Tower.gif
Ruled Surface & Surface of Revolution (Circular Hyperboloid)
The ruled surface was created by sliding a plane curve (a straight line) along another plane curve (a circle), while keeping the angle between them constant. The surfaces of revolution was simply made by revolving a plane curve around an axis. (Surface of translation also exist, and are similar to ruled surfaces, only the orientation of the curves is kept constant instead of the angle.)
 
Cylinder_-_hyperboloid_-_cone.gif
Hyperboloid Generation [Source:Wikipedia]

The hyperboloid has been a popular design choice for (especially nuclear cooling) towers. It has excellent tensile and compressive properties, and can be built with straight members. This makes it relatively cheap and easy to fabricate relative to it’s size and performance.

These towers are pretty cool acoustically as well: https://youtu.be/GXpItQpOISU?t=40s

 

8.0 Geodesic Curves

These are singly curved curves, although that does sound confusing. A simple way to understand what geodesic curves are, is to give them a width. As previously explored, we know that curves can inhabit, and fill, two-dimensional space. However, you can’t really observe the twists and turns of a shape that has no thickness.

Geodesic Curves - Ribon.jpg
Conic Plank Lines (Source: The Geometry of Bending)

A ribbon is essentially a straight line with thickness, and when used to follow the curvature of a surface (as seen above), the result is a plank line. The term ‘plank line’ can be defined as a line with an given width (like a plank of wood) that passes over a surface and does not curve in the tangential plane, and whose width is always tangential to the surface.

Since one-dimensional curves do have an orientation in digital modeling, geodesic curves can be described as the one-dimensional counterpart to plank lines, and can benefit from the same definition.

The University of Southern California published a paper exploring the topic further: http://papers.cumincad.org/data/works/att/f197.content.pdf

8.1 – Basic Grid Setup

For simplicity, here’s a basic grid set up on a flat plane:

G-Geocurves.gif
Basic geodesic curves on a plane

We start by defining two points anywhere along the edge of the surface. Then we find the geodesic curve that joins the pair. Of course it’s trivial in this case, since we’re dealing with a flat surface, but bear with me.

H-Geocurves.gif
Initial set of curves

We can keep adding pairs of points along the edge. In this case they’re kept evenly spaced and uncrossing for the sake of a cleaner grid.

I-Geocurves.gif
Addition of secondary set of curves

After that, it’s simply a matter of playing with density, as well as adding an additional set of antagonistic curves. For practicality, each set share the same set of base points.

J-Geocurves.gif
Grid with independent sets

He’s an example of a grid where each set has their own set of anchors. While this does show the flexibility of a grid, I think it’s far more advantageous for them to share the same base points.

8.2 – Basic Gridshells

The same principle is then applied to a series of surfaces with varied types of curvature.

K-Barrel
Uniclastic: Barrel Vault Geodesic Gridshell

First comes the shell (a barrel vault in this case), then comes the grid. The symmetrical nature of this surface translates to a pretty regular (and also symmetrical) gridshell. The use of geodesic curves means that these gridshells can be fabricated using completely straight material, that only necessitate single curvature.

L-Conoid
Uniclastic: Conoid Geodesic Gridshell

The same grid used on a conical surface starts to reveal gradual shifts in the geometry’s spacing. The curves always search for the path of least resistance in terms of bending.

M-Dome
Synclastic: Dome Geodesic Gridshell

This case illustrates the nature of geodesic curves quite well. The dome was free-formed with a relatively high degree of curvature. A small change in the location of each anchor point translates to a large change in curvature between them. Each curve looks for the shortest path between each pair (without leaving the surface), but only has access to single curvature.

N-Saddle
Anticlastic: Saddle Geodesic Gridshell

Structurally speaking, things get much more interesting with anticlastic curvature. As previously stated, each member will behave differently based on their relative curvature and orientation in relation to the surface. Depending on their location on a gridshell, plank lines can act partly in compression and partly in tension.

On another note:

While geodesic curves make it far more practical to fabricate shells, they are not a strict requirement. Using non-geodesic curves just means more time, money, and effort must go into the fabrication of each component. Furthermore, there’s no reason why you can’t use alternate grid patterns. In fact, you could use any pattern under the sun – any motif your heart desires (even tessellated puppies.)

6 - Alternate Grid
Alternate Gridshell Patterns [Source: IL 10 – Institute for Lightweight Structures and Conceptual Design]

Here are just a few of the endless possible pattern. They all have their advantages and disadvantages in terms of fabrication, as well as structural potential.

Biosphere Environment Museum - Canada
Biosphere Environment Museum – Canada

Gridshells with large amounts of triangulation, such as Buckminster Fuller’s geodesic spheres, typically perform incredibly well structurally. These structure are also highly efficient to manufacture, as their geometry is extremely repetitive.  

Centre Pompidou-Metz - France
Centre Pompidou-Metz – France

Gridshells with highly irregular geometry are far more challenging to fabricate. In this case, each and every piece had to be custom made to shape; I imagine it must have costed a lot of money, and been a logistical nightmare. Although it is an exceptionally stunning piece of architecture (and a magnificent feat of engineering.)

8.3 – Gridshell Construction

In our case, building these shells is simply a matter of converting the geodesic curves into planks lines.

O - Saddle 2
Hyperbolic Paraboloid: Straight Line Sweep Variation With Rotating Plank Line Grid

The whole point of using them in the first place is so that we can make them out of straight material that don’t necessitate double curvature. This example is rotating so the shape is easier to understand. It’s grid is also rotating to demonstrate the ease at which you can play with the geometry.

Hyperbolic-Paraboloid-Plank-Lines
Hyperbolic Paraboloid: Flattened Plank Lines With Junctions

This is what you get by taking those plank lines and laying them flat. In this case both sets are the same because the shell happens to the identicall when flipped. Being able to use straight material means far less labour and waste, which translates to faster, and or cheaper, fabrication.

An especially crucial aspect of gridshells is the bracing. Without support in the form of tension ties, cable ties, ring beams, anchors etc., many of these shells can lay flat. This in and of itself is pretty interesting and does lends itself to unique construction challenges and opportunities. This isn’t always the case though, since sometimes it’s the geometry of the joints holding the shape together (like the geodesic spheres.) Sometimes the member are pre-bent (like Pompidou-Metz.) Although pre-bending the timber kinda strikes me as cheating thought.. As if it’s not a genuine, bona fide gridshell.

Toledo-gridshell-20-Construction-process
Toledo Gridshell 2.0. Construction Process [source: Timber gridshells – Numerical simulation, design and construction of a full scale structure]

This is one of the original build method, where the gridshell is assembled flat, lifted into shape, then locked into place.

9.0 Form Finding

Having studied the basics makes exploring increasingly elaborate geometry more intuitive. In principal, most of the shells we’ve looked are known to perform well structurally, but there are strategies we can use to focus specifically on performance optimization.

9.0 – Minimal Surfaces

These are surfaces that are locally area-minimizing – surfaces that have the smallest possible area for a defined boundary. They necessarily have zero mean curvature, i.e. the sum of the principal curvatures at each point is zero. Soap bubbles are a great example of this phenomenon.

hyperbolic paraboloid soap bubble
Hyperbolic Paraboloid Soap Bubble [Source: Serfio Musmeci’s “Froms With No Name” and “Anti-Polyhedrons”]
Soap film inherently forms shapes with the least amount of area needed to occupy space – that minimize the amount of material needed to create an enclosure. Surface tension has physical properties that naturally relax the surface’s curvature.

00---Minimal-Surface-Model
Kangaroo2 Physics: Surface Tension Simulation

We can simulate surface tension by using a network of curves derived from a given shape. Applying varies material properties to the mesh results in a shape that can behaves like stretchy fabric or soap. Reducing the rest length of each of these curves (while keeping the edges anchored) makes them pull on all of their neighbours, resulting in a locally minimal surface.

Here are a few more examples of minimal surfaces you can generate using different frames (although I’d like stress that the possibilities are extremely infinite.) The first and last iterations may or may not count, depending on which of the many definitions of minimal surfaces you use, since they deal with pressure. You can read about it in much greater detail here: https://tinyurl.com/ya4jfqb2

Eden_Project_geodesic_domes_panorama.jpg
The Eden Project – United Kingdom

Here we have one of the most popular examples of minimal surface geometry in architecture. The shapes of these domes were derived from a series of studies using clustered soap bubbles. The result is a series of enormous shells built with an impressively small amount of material.

Triply periodic minimal surfaces are also a pretty cool thing (surfaces that have a crystalline structure – that tessellate in three dimensions):

Another powerful method of form finding has been to let gravity dictate the shapes of structures. In physics and geometry, catenary (derived from the Latin word for chain) curves are found by letting a chain, rope or cable, that has been anchored at both end, hang under its own weight. They look similar to parabolic curves, but perform differently.

00---Haning-Model
Kangaroo2 Physics: Catenary Model Simulation

A net shown here in magenta has been anchored by the corners, then draped under simulated gravity. This creates a network of hanging curves that, when converted into a surface, and mirrored, ultimately forms a catenary shell. This geometry can be used to generate a gridshell that performs exceptionally well under compression, as long as the edges are reinforced and the corners are braced.

While I would be remiss to not mention Antoni Gaudí on the subject of catenary structure, his work doesn’t particularly fall under the category of gridshells. Instead I will proceed to gawk over some of the stunning work by Frei Otto.

Of course his work explored a great deal more than just catenary structures, but he is revered for his beautiful work on gridshells. He, along with the Institute for Lightweight Structures, have truly been pioneers on the front of theoretical structural engineering.

9.3 – Biomimicry in Architecture

There are a few different terms that refer to this practice, including biomimetics, bionomics or bionics. In principle they are all more or less the same thing; the practical application of discoveries derived from the study of the natural world (i.e. anything that was not caused or made my humans.) In a way, this is the fundamental essence of the scientific method: to learn by observation.
Biomimicry-Bird-Plane
Example of Biomimicry

Frei Otto is a fine example of ecological literacy at its finest. A profound curiosity of the natural world greatly informed his understanding of structural technology. This was all nourished by countless inquisitive and playful investigations into the realm of physics and biology. He even wrote a series of books on the way that the morphology of bird skulls and spiderwebs could be applied to architecture called Biology and Building. His ‘IL‘ series also highlights a deep admiration of the natural world.

Of course he’s the not the only architect renown their fascination of the universe and its secrets; Buckminster Fuller and Antoni Gaudí were also strong proponents of biomimicry, although they probably didn’t use the term (nor is the term important.)

Gaudí’s studies of nature translated into his use of ruled geometrical forms such as hyperbolic paraboloids, hyperboloids, helicoids etc. He suggested that there is no better structure than the trunk of a tree, or a human skeleton. Forms in biology tend to be both exceedingly practical and exceptionally beautiful, and Gaudí spent much of his life discovering how to adapt the language of nature to the structural forms of architecture.

Fractals were also an undisputed recurring theme in his work. This is especially apparent in his most renown piece of work, the Sagrada Familia. The varying complexity of geometry, as well as the particular richness of detail, at different scales is a property uniquely shared with fractal nature.

Antoni Gaudí and his legacy are unquestionably one of a kind, but I don’t think this is a coincidence. I believe the reality is that it is exceptionally difficult to peruse biomimicry, and especially fractal geometry, in a meaningful way in relation to architecture. For this reason there is an abundance of superficial appropriation of organic, and mathematical, structures without a fundamental understanding of their function. At its very worst, an architect’s approach comes down to: ‘I’ll say I got the structure from an animal. Everyone will buy one because of the romance of it.”

That being said, modern day engineers and architects continue to push this envelope, granted with varying levels of success. Although I believe that there is a certain level of inevitability when it comes to how architecture is influenced by natural forms. It has been said that, the more efficient structures and systems become, the more they resemble ones found in nature.

Euclid, the father of geometry, believed that nature itself was the physical manifestation of mathematical law. While this may seems like quite a striking statement, what is significant about it is the relationship between mathematics and the natural world. I like to think that this statement speaks less about the nature of the world and more about the nature of mathematics – that math is our way of expressing how the universe operates, or at least our attempt to do so. After all, Carl Sagan famously suggested that, in the event of extra terrestrial contact, we might use various universal principles and facts of mathematics and science to communicate.

The Curves of Life

“An organism is so complex a thing, and growth so complex a phenomenon, that for growth to be so uniform and constant in all the parts as to keep the whole shape unchanged would indeed be an unlikely and an unusual circumstance. Rates vary, proportions change, and the whole configuration alters accordingly.” – D’Arcy Wentworth Thompson

“This is the classic reference on how the golden ratio applies to spirals and helices in nature.” – Martin Gardner

The Curves Of Life

What makes this book particularly enjoyable to flip through is an abundance of beautiful hand drawings and diagrams. Sir Theodore Andrea Cook explores, in great detail, the nature of spirals in the structure of plants, animals, physiology, the periodic table, galaxies etc. – from tusks, to rare seashells, to exquisite architecture.

He writes, “a staircase whose form and construction so vividly recalled a natural growth would, it appeared to me, be more probably the work of a man to whom biology and architecture were equally familiar than that of a builder of less wide attainments. It would, in fact, be likely that the design had come from some great artist and architect who had studied Nature for the sake of his art, and had deeply investigated the secrets of the one in order to employ them as the principles of the other.

Cook especially believes in a hands-on approach, as oppose to mathematic nation or scientific nomenclature – seeing and drawing curves is far more revealing than formulas.

252264because I believe very strongly that if a man can make a thing and see what he has made, he will understand it much better than if he read a score of books about it or studied a hundred diagrams and formulae. And I have pursued this method here, in defiance of all modern mathematical technicalities, because my main object is not mathematics, but the growth of natural objects and the beauty (either in Nature or in art) which is inherent in vitality.

Despite this, it is clear that Theodore Cook has a deep love of mathematics. He describes it at the beautifully precise instrument that allows humans to satisfy their need to catalog, label and define the innumerable facts of life. This ultimately leads him into profoundly fascinating investigations into the geometry of the natural world.

 

Relevant Material

20157073

“An organism is so complex a thing, and growth so complex a phenomenon, that for growth to be so uniform and constant in all the parts as to keep the whole shape unchanged would indeed be an unlikely and an unusual circumstance. Rates vary, proportions change, and the whole configuration alters accordingly.” – D’Arcy Wentworth Thompson

D’Arcy Wentworth Thompson wrote, on an extensive level, why living things and physical phenomena take the form that they do. By analysing mathematical and physical aspects of biological processes, he expresses correlations between biological forms and mechanical phenomena.

He puts emphasis on the roles of physical laws and mechanics as the fundamental determinants of form and structure of living organisms. D’Arcy describes how certain patterns of growth conform to the golden ratio, the Fibonacci sequence, as well as mathematics principles described by Vitruvius, Da Vinci, Dürer, Plato, Pythagoras, Archimedes, and more.

While his work does not reject natural selection, it holds ‘survival of the fittest’ as secondary to the origin of biological form. The shape of any structure is, to a large degree, imposed by what materials are used, and how. A simple analogy would be looking at it in terms of architects and engineers. They cannot create any shape building they want, they are confined by physical limits of the properties of the materials they use. The same is true to any living organism; the limits of what is possible are set by the laws of physics, and there can be no exception.

 

Further Reading:

Michael-Pawlyn-Biomimicry-A-new-paradigm-1
Biomimicry in Architecture by Michael Pawlyn

“You could look at nature as being like a catalogue of products, and all of those have benefited from a 3.8 billion year research and development period. And given that level of investment, it makes sense to use it.” – Michael Pawlyn

Michael Pawlyn, one of the leading advocates of biomimicry, describes nature as being a kind of source-book that will help facilitate our transition from the industrial age to the ecological age of mankind. He distinguishes three major aspects of the built environment that benefit from studying biological organisms:

The first being the quantity on resources that use, the second being the type of energy we consume and the third being how effectively we are using the energy that we are consuming.

Exemplary use of materials could often be seen in plants, as they use a minimal amount of material to create relatively large structures with high surface to material ratios. As observed by Julian Vincent, a professor in Biomimetics, “materials are expensive and shape is cheap” as opposed to technology where the inverse is often true.

Plants, and other organisms, are well know to use double curves, ribs, folding, vaulting, inflation, as well as a plethora of other techniques to create forms that demonstrate incredible efficiency.

Triply periodic minimal surfaces _topology

start

Frequently occuring in nature, minimal surfaces are defined as surfaces with zero mean curvature.  These surfaces originally arose as surfaces that minimized total surface area subject to some constraint. Physical models of area-minimizing minimal surfaces can be made by dipping a wire frame into a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire frame.

The thin membrane that spans the wire boundary is a minimal surface of all possible surfaces that span the boundary, it is the one with minimal energy. One way to think of this “minimal energy” is that to imagine the surface as an elastic rubber membrane: the minimal shape is the one that in which the rubber membrane is the most relaxed.

 

A minimal surface parametrized as x=(u,v,h(u,v)) therefore satisfies Lagrange`s equation

(1+h(v)^2)*h(uu)-2*h(u)*h(v)*h(uv)+(1+h(u)^2)*h(vv)=0

(Gray 1997, p.399)

This year`s research focuses on triply periodic minimal surfaces (TPMS). A TPMS is a type of minimal surface which is invariant under a rank-3 lattice of translations. In other words, a TPMS is a surfaces which, through mirroring and rotating in 3D space, can form an infinite labyrinth. TPMS are of particular relevance in natural sciences, having been observed in observed as biological membranes, as block copolymers, equipotential surfaces in crystals, etc.

From a mathematical standpoint, a TPMS is the most interesting type of surface, as all connected RPMS have genus >=3, and in every lattice there exist orientable embedded TPMS of every genus >=3. Embedded TPMS are orientable and divide space into disjoint sub-volumes. If they are congruent the surface is said to be a balance surface.

The first examples of TPMS were the surfaces described by Schwarz in 1865, followed by a surface described by his student Neovius in 1883. In 1970 Alan Schoen, a then NASA scientist, described 12 more TPMS, and in 1989 H. Karcher proved their existence.

The first part of my research focuses on understanding TPMS geometry using a generation method that uses a marching cubes algorithm to find the results of the implicit equtions describing each particular type of TMPS. The resulting points form a mesh that describes the geometry.

Schwartz_P surface

schwartz_p_formation   Schwartz_p

Neovius surface

Neovius_formation neovius

Gyroid surface

gyroid_formation gyroid

Generated from mathematical equations, these diagrams show the plotting of functions with different domains. Above, the diagrams on the left illustrate the process of forming a closed TMPS, starting from a domain of 0.5, which generates an elementary cell, which is mirrored and rotate 7 times to form a closed TPMS. A closed TMPS can also be approximated by changing the domain of the function to 1.

The diagrams below show some examples generating a TMPS from a function with a domain of 2. The views are front, top and axonometric.

FRD surface

dd = 8 * Math.Cos(px) * Math.Cos(py) * Math.Cos(pz) + Math.Cos(2 * px) * Math.Cos(2 * py) * Math.Cos(2 * pz) – Math.Cos(2 * px) * Math.Cos(2 * py) – Math.Cos(2 * py) * Math.Cos(2 * pz) – Math.Cos(2 * pz) * Math.Cos(2 * px)

FRD

D Prime surface

dd = 0.5 * (Math.Sin(px) * Math.Sin(py) * Math.Sin(pz) + Math.Cos(px) * Math.Cos(py) * Math.Cos(pz)) – 0.5 * (Math.Cos(2 * px) * Math.Cos(2 * py) + Math.Cos(2 * py) * Math.Cos(2 * pz) + Math.Cos(2 * pz) * Math.Cos(2 * px)) – 0.2

D_prime

FRD Prime surface

dd = 4 * Math.Cos(px) * Math.Cos(py) * Math.Cos(pz) – Math.Cos(2 * px) * Math.Cos(2 * py) – Math.Cos(2 * pz) * Math.Cos(2 * py) – Math.Cos(2 * px) * Math.Cos(2 * pz)

FRD_prime

Double Gyroid surface

dd = 2.75 * (Math.Sin(2 * px) * Math.Sin(pz) * Math.Cos(py) + Math.Sin(2 * py) * Math.Sin(px) * Math.Cos(pz) + Math.Sin(2 * pz) * Math.Sin(py) * Math.Cos(px)) – 1 * (Math.Cos(2 * px) * Math.Cos(2 * py) + Math.Cos(2 * py) * Math.Cos(2 * pz) + Math.Cos(2 * pz) * Math.Cos(2 * px))

gyroid_double

Gyroid surface

dd = Math.Cos(px) * Math.Sin(py) + Math.Cos(py) * Math.Sin(pz) + Math.Cos(pz) * Math.Sin(px)

gyroid

This method of approximating a TPMS is high versatile, useful in understanding the geometry, offsetting the surfaces and changing the bounding box of the lattice in which the surface is generated. In other words, trimming the surface and isolating parts of the surface. However, the resulting topology is unsuitable for fabrication purposes, as the generated mesh is unclean, being composed of irregular polygons consisting of triangulations, quads and hexagons.

The following diagrams show the mesh topology for a Gyroid surface, offset studies and trimming studies.

 

1

4  23

For fabrication purposes, my proposed method for computationally simulating a TPMS is derived from discrete differential geometry, relying on the use of Kangaroo Physics, a Grasshopper plugin for modeling tensile membranes. Bearing in mind that a TPMS has 6 edge conditions, a planar hexagonal mesh is placed within the space defined by a certain TPMS`s edge conditions. The edge conditions are interpreted as Nurbs curves. Constructed from 6 predefined faces, the initial planar hexagonal mesh, together with the curves defining the surface boundaries are split into the same number of subdivisions. The subdivision algorithm used on the mesh is WeaveBird`s triangular subdivision. The points resulted from the curve division are ordered so that they match the subdivided mesh`s edges, or its naked vertices. The naked vertices are then moved in the corresponding points on the curve, resulting in a new mesh describing a triply periodic surface, but not a minimal one. From this point, Kangaroo Physics is used to find the minimal surface for the given mesh parameters, resulting in a TPMS.

Sequential diagram showing the generation of a Schwartz_P surfaces using the above method.

Page29

A Gyroid surface approximated with the above method

gyroid_full  8

This approach towards approximating a TPMS leads to a study in the change of boundary conditions, gaining control over the geometry. The examples below present various gyroid distorsions generated by changing the boundary conditions.

6  7

5  4

Being able to control the boundary conditions defining a gyroid, or any TPMS, opens up to form optimization through genetic algorithms. Here, various curvatures for the edge conditions have been tested with regards to solar gain, using Galapagos for Grasshopper.

1_1                2_1

3_1                 4_1

The following examples show some patterns generated by different topologies of the starting mesh.

1_12

34

56

78

gif_1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

PNEU + PACK

All living organisms are composed of cells, and cells are fluid-filled spaces surrounded by an envelope of little material- cell membrane. Frei Otto described this kind of structure as pneus.

From first order,  peripheral conditions or the packing configuration spatially give rise to specific shapes we see on the second  and third order.

This applies to most biological instances.  On a larger scale, the formation of beehives is a translated example of the different orders of ‘pneu’.

Interested to see the impact of lattice configuration on the forms, I moved on to digital physics simulation with Kangaroo 2 (based on a script by David Stasiuk). The key parameters involved for each lattice configuration are:

Inflation pressure in spheres
Collision force between the spheres
Collision force of spheres and bounding box
Surface tension of spheres
Weight.

 

Physical exploration is also done to understand pneumatic behaviors and their parameters.

This followed by 3D pneumatic space packing. Spheres in different lattice configuration is inflated, and then taken apart to examine the deformation within. This process can be thought of as the growing process of seeds or pips in fruits such as pomegranates and citrus under hydrostatic pressure within its skin; and dissections of these fruits.

As the spheres take the peripheral conditions, the middles ones which are surrounded by spheres transformed into Rhombic dodecahedron, Trapezoid Rhombic dodecahedron and diamond respectively in Hex Grid, FCC Grid,  and Square Grid. The spheres at the boundary take the shape of the bounding box hence they are more fully inflated(there are more spaces in between spheres and bounding box for expansion).

   

Physical experimentation has been done on inflatables structures. The following shows some of the outcome on my own and during an Air workshop in conjunction with Playweek led by Will Mclean and Laylac Shahed.

To summarize, pneumatic structures are forms wholly or mainly stabalised by either
– Pressurised difference in gas. Eg. Air structure or aerated foam structures
– liquid/hydrostatic pressure. Eg. Plant cells
– Forces between materials in bulk. Eg. Beehive, Fruits seeds/pips

There is a distinct quality of unpredictability and playfulness that pneumatic structures could offer. The jiggly nature of inflatables, the unpredictability resulted from deformation by compression and its lightweightness are intriguing. I will call them as pneumatic behaviour. I will continually explore what pneumatic materials and assembly of them could offer spatially in Brief 02. Digital simulations proved to be helpful in expressing the dynamic behaviours of pneumatic structures too, which I intend to continue.

Thousand Line Construction

Thousand Line Construction :

Hamish Macpherson

A spatial exploration into the interplay of materials, construction techniques, and delicate and precise design.

Inspired by Hanakago; the craft of Japanese Bamboo basketry, to celebrate the western discovery of tea and its associated culture during the renaissance.

Page 1

Page 13

Page 14

Page 15

Page 16

Page 17

Page 18

Page 19

Page 110

Page 111

Page 112

Page 113

Page 114Page 115
Page 116

Page 117

Page 118

Page 119

Page 120

Page 121

Page 122

232425

 

 

 

 

 

The Butterfly Egg

Geometry can be found on the smallest of scales, as is proven by the beautiful work of the butterfly in creating her eggs. The butterflies’ metamorphosis is a recognised story, but few know about the start of the journey. The egg from which the caterpillar emerges is in itself a magnificently beautiful object.

Geometry can be found on the smallest of scales, as is proven by the beautiful work of the butterfly in creating her eggs. The butterflies’ metamorphosis is a recognised story, but few know about the start of the journey. The egg from which the caterpillar emerges is in itself a magnificently beautiful object. The tiny eggs, barely visible to the naked eye, serve as home for the developing larva as well as their first meal.

White Royal [Pratapa deva relata] HuDie's Microphotography
White Royal [Pratapa deva relata] HuDie’s Microphotography
shapes copy
Clockwise: Hesperidae, Nymphalidae, Satyridae, Pieridae

Each kind of butterfly has its unique egg design, creating a myriad of beautiful variations.

These are some of the typical shapes that each family produce.

But it is the Lycaenidae family that have the most geometrical and intricate eggs.

lyc
Lycaenidae

Other eggs
Lycaenidae eggs from left to right: Acacia Blue [Surendra vivarna amisena], Aberrant Oakblue [Arhopala abseus], Miletus [Miletus biggsii], Malayan [Megisba malaya sikkima]. HuDie’s Microphotography
 1

Biomimetics, or biomimicry is an exciting concept that suggests that every field and industry has something to learn from the natural world. The story of evolution is full of problems that have been innovatively solved.

2

There are thousands of species of butterfly, each with their unique egg design. 3A truncated icosahedron for a frame, the opposite of a football. Instead of panels pushed out, they are pulled in.

4567

Fractals are commonly occurring in nature, and can be described as a never-ending pattern on different scales. People are subconsciously familiar with fractals, so are inherently more relaxed when surrounded by them.

891011121314151617181920212223242526

3D Printing is a relatively new technology that is set to change our world. Innovations in the uses of 3D printers, combined with falling costs, means that they could be a ubiquitous tool in every home and industry. 3D printers and scanners are already used a great deal in everything from the biomedical field to art studios, and experiments are currently being done to construct entire homes. This technology is in its infancy, and it is exactly for this reason that every effort should be taken to research its potential. It is common to use 3D printers in architecture to show small working models, I would like to now use it to make a large and complex structure at full scale.

27

This research will underpin the design of a sculptural installation in which people can interact with live butterflies. With the ever-declining numbers of butterflies worldwide and in the UK, conservation and education are paramount.

The link between butterflies and humans in our ecosystem is one that is vital and should be conserved and celebrated.

I can imagine an ethereal space filled with dappled light where people can come for contemplation and perhaps their own personal metamorphosis.

Interior

—Tia

Vulcan’s Flame

A geometric wall of fire burning on the sands of the Black Rock Desert. This immobile blaze stands as an edifice to Burning Man’s original figurehead. A burning yet fireless wall of plywood and acetate that can be encountered, entered and sheltered in.

20150125 Day Render w rays20150127 Night Render

This sculpture stands as an abstract image of flames sent by Vulcan the Roman God of fire, an emblem of the festival’s name. Created from a series of plywood shapes and acrylic, Vulcan’s Flame is a blazing wall of light and colour. The structure is created to both imitate and juxtapose chemical fire, sharing real fires beauty but opposing its destructive tendencies. The sculpture is designed as a wall of shelter, behind which burners can be shielded from the desert’s unforgiving sun.

Born from Ancient Egyptian ‘Cairo tiling’, the sculpture is created from morphing polyhedra. The lowest section of the fire is created from cubes which gradually deform into rhombic dodecahedrons – a cubist interpretation of a flames movement. Internally every shape is painted to mimic fire’s bright hues and coloured acetate panels within the wall will project red and yellow tones onto the surrounding desert floor. At night internal spotlights will illuminate the entire structure, creating a glowing inferno of colour. These lights will flicker to create the illusion of movement.

Visually the main structure consists of three main forms;

  • The outer zone: the sparse cubic section of the sculpture, representing the hottest part of a flame, the region of complete combustion
  • The middle zone: this is the central area in which the cubic deformation begins to occur.
  • The inner zone: this is the coolest space, the most densely packed red area of the sculpture. Burners can crawl into this space – sheltered by four layers of dodecahedrons.

Rendered Plan

Physical Description:

Vulcan’s Flame is a long, low plywood structure, the installation is the geometric interpretation of a flame, a curving sculpture of deforming polyhedral that slowly transform from a cube to a rhombic dodecahedron. The sculpture is created from 55 plywood polyhedra constructed from hand cut plywood boards and secured with cable ties. Internally each shape is painted using natural, organic paints, as the shapes change their internal colour alters from yellow to red. Coloured acetate panels in the uppermost faces of each shape will mirror the shapes internal hue, these panels will allow sunlight through during the day casting beautiful coloured shadows on the desert floor. At night the sculpture will be lit internally with fluctuating spot lights, this will create the illusion of flickering movement. The acetate panels will be secured with nails.

Construction Sequence

The structure sits on a base of 23 plywood shapes, secured to the ground with rebar stakes. The sculpture is very stable as the base is the widest section, the rest of the sculpture tapers away towards the top. Each new shape rest on the 4 corners of the shapes below, bolted through the vertices and then secured with rope. The final and highest rhombic dodecahedron is stabilised with a steel column. The highest point on the entire structure is just over 11 feet above ground level and consists of 4 stacked shapes. A full sized version of one of the shapes has already been constructed and load tested confirming that it can support human weight, all of the cable ties securing the structure will be meticulously rubbed down to ensure they are not sharp.

The sculpture curves in a gentle arc – creating a central area of shelter from the wind and sun. At ground level Burners can crawl inside the structure and rest in it’s shady, tinted interior.


20150129 Single Component

Inspired by previous research of pyritohedrons, these structures are an addition to a series of other models based on polyhedral deformation. Previous models have experimented with density, altering colour and infill panels.

Previous Models