David Rutten’s Webinars on Grasshopper

Here are all the webinars given by David Rutten, the creator of Grasshopper:

Introduction to Grasshopper with David Rutten:

David Rutten’s Introduction to Grasshopper Webinar:

Advanced Topics in Grasshopper:

You can also access Rhino tutorials on their Vimeo Channel (https://vimeo.com/rhino). You will see amazing tutorials such as an intro to the Scan & Solve structural analysis (Michael Clarke wrote a post on it previously: https://wewanttolearn.wordpress.com/2012/11/08/scan-and-solve-for-rhino/):

Welcome to Freeform Modeling In Rhino

 

Grasshopper Tutorials by Kristof Crolla

After our post on Jake Hebbert‘s tutorial, here are some great Grasshopper tricks to create boids or fractals by Kristof Crolla, Architect at LEAD and teacher at Honk Kong University on his vimeo channel:

Below: Boids behaviour with Hoopsnake

 

Below: Fractals using Hoopsnake:

 

Below: Catenary Network on Kangaroo:

 

Below: Explaining the path mapper:

 

Below: Organizing hexagons on flat list

1.

2.

 

The Nature of Code on Grasshopper

After posting about the book explaining basic concepts of computational design, The Nature of Code by Daniel Shiffman, I thought it would be helpful to convert all the example into Grasshopper files. Well here you go: Jake Hebbert has done it on youtube, exciting tutorials using python for Grasshopper. Here are couple example of tutorials extracted from Jake’s youtube channel:

Walker:

Walker02:

Bouncing Balls:

Gravity between movers:

Hankin’s Method

A small script based on Hankin’s Method to generate nonperiodic plane tiling patterns. It includes a very crude method for applying colour, as well as a basic projection on a non euclidean space plus the appropriate Poincare disc. This is not an Archimedean tessellation in hyperbolic space, being just a projection of the flat Hankin tiling, .

ImageImageImageImage

Plateau’s Laws, Soap Bubbles & Grasshopper

The Grasshopper script simulates a random soap bubble cluster starting from 3 soap bubbles of known radii based on Plateau’s Laws. All surfaces in a bubble cluster are spherical, including films dividing two adjacent bubbles.

A list is used to store valid bubbles generated through a Hoopsnake sequence and a number of custom components calculate correct bubble intersection in line with Plateau’s Laws.

Scan-and-Solve for Rhino

Scan-and-Solve is a plug-in for Rhino which ‘completely automates basic structural simulation of Rhino solids. Unlike other analysis tools, no preprocessing (meshing, simplification, healing, translating, etc.) is needed.’ See http://www.scan-and-solve.com/ for additional information, tutorials and discussions or you can also find it through the www.food4rhino.com downloads list.

Attached are my initial explorations in the student license of the software to analyse a block for use in a reciprocal grid structure. As the images show, the software is very simple to use, simply choose a solid; a material from the drop down list; select the faces to act as restraints and then the loads to apply. View the results as a colour gradient showing displacement values or danger levels within the solid. The software also allows you to visualise the deformation. Unfortunately, you cannot perform analysis on multiple solids within a system currently and the student license is limited to a solid of 50 faces or less.

Learning Revit + Linking it with Grasshopper

Below is the best tutorials I found so far to learn Revit Architecture (it goes from 1-17), here is the youtube channel.

Also to link Grasshopper with BIM tools such as Revit, Vasari or Digital Project, have a look at the Autodesk Webinar series on that topic. Geometry Gym uses the IFC OpenBIM data model to export families from Grasshopper to Revit. This allows to have items such as walls or slabs with materials…etc… imported as such on Revit or Digital Project or any BIM software. The other plugin focus on “Adaptive Components” from Grasshopper to Revit. Chameleon allows to bring back models to Grasshopper from Revit which is useful when doing simulations.

Introduction:

Jon Mirtschin’s Geometry Gym IFC importer:

Hiroshi Jacobs’ Chameleon:

Tim Meador’s Hummingbird:

Nathan Miller’s OpenNurbs Import:

All these initiatives are discussed in the Grasshopper group on the forum. Vasari has a very similar forum than the Grasshopper on. Have look: http://autodeskvasari.com/forum

Autodesk’s products are free for students, download them here: http://students.autodesk.com/

Koch Division

Progression of a Koch snowflake as it is described by a recursive definition I wrote in grasshopper

Koch snowflake in Grasshopper

Application of the same principle for a regular tetrahedron made through a recursive hrasshopper definition..

Koch tetrahedron

Paper model for Koch tetrahedron

Paper model

A Year of Grasshopper Experiments with DS10

It has almost been already a year that Toby and I started tutoring DS10 at Westminster. One of our main ambitions was to link physical and digital experiments so that one feeds the other.

Physical reality is much more than surfaces on a screen therefore students created complex parametric models working as systems linked to many forces (gravity, environment, structure…etc…) and not just finished objects. These very precise digital models allow students to implement what they learn from their physical models, to simulate even more design options and further understand the rules behind them.

To do so, they used Grasshopper and its numerous plugins provided by generous developers. Grasshopper is a graphical algorithm editor integrated with Rhinoceros 3D modelling tool and a 18,000 strong community exchanging ideas and helping each other on the Grasshopper3d.com forum.

Below are most of the printscreens that I used to help the students with their journey into parametric modelling which is based on help that I also received previously. I hope that this will help others to design amazing things! If you have any questions on one of the images, please do not hesitate to ask.

Below is my favourite image: packing balloons on a surface using Kangaroo (with Emma Whitehead)