


















































Delving deeper into the world of mathematics, fractals, geometry, and space-filling curves.
In 1890, Giuseppe Peano discovered the first of what would be called space-filing curves:
something caught in between dimensions – on its way to becoming more.
The Wishing Well is the physical manifestation, a snap-shot, of a creature caught in between dimensions – frozen in time. It is a digital entity that has been extracted from its home in the fractured planes of the mathematical realm; a differentially grown curve in bloom, organically filling space in the material world.
The notion of geometry in between dimensions is explored in a previous post: Shapes, Fractals, Time & the Dimensions they Belong to
The piece will be built from the bottom-up. Starting with the profile of a differentially grown curve (a squiggly line), an initial layer will be set in pieces of 2 x 4 inch wooden studs (38 x 89 millimeter profile) laid flat, and anchored to the ground. Each subsequent layer will be built upon and fixed to the last, where each new layer is a slightly smoother version than the last. 210 layers will be used to reach a height of 26 feet (8 meters). The horizontal spaces in between each of the pieces will automatically generate hand and foot holes, making the structure easily climbable. The footprint of the build will be bound to a space 32 x 32 feet.
The design may utilize two layers, inner and out, that meet at the top to increase the structural integrity for the whole build. It will be lit from within, either from the ground with spotlights or with LED strip lights following patterns along the walls.
At the Wishing Well, visitors embark on a small journey, exploring the uniquely complex geometry of the structure before them. As they approach the foot of the well, it will stand towering above them, undulating organically across the landscape. The nature of the structure’s curves beckons visitors to explore the piece’s every nook and cranny. Moreover, its stature grants a certain degree of shelter to any traveller seeking refuge from the Playa’s extreme weather conditions. The well’s shape and scale allows natural, and artificial, light to interact in curious ways with the structure throughout the day and night. The horizontal gaps between every ‘brick’ in the wall allows light to filter through each layer, which in turn casts intriguing shadows across the desert. This perforation also allows Burners to easily, and relatively safely, scale the face of the build. Visitors will have the opportunity to grant a wish by writing it down on a tag and fixing it to the well’s interior.
If you had one magical (paradox free) wish, to do anything you like, what would it be?
Anything can be wished for at the Wishing Well, but a wish will not come true if it is deemed too greedy. Visitors must write their wish down on a tag and fix it to the inside of the well. They must choose wisely, as they are only allowed one. Additionally, they may choose to leave a single, precious, offering. However, if the offering does not burn, it will not be accepted. Visitors will also find that they must tread lightly on other people’s wishes and offerings.
The color of the tag and offering are important as they are associated with different meanings:
The Wishing Well is a physical manifestation of the wishes it holds. They are something caught in between – on their way to becoming more. I wish for guests to reflect on where they’ve been, where they are, where they are going, and where they wish to go.
Diploma Studio 10 is back with 21 talented architecture students from 4th and 5th year working on the Brief01:Fractals. Here is an overview of their experiments so far after 4 weeks of workshops.
Hello WeWantToLearn community. We’re going to Burning Man in less than a month!
Our project this year will be a physical manifestation of our collective dreams and is called Tangential Dreams. It is a seven meters high temporary timber tower displaying inspiring messages from around the world, written on a multitude of swirling “tangents”.
We need your help to realise our project! There is only three days left to collect the missing £5,000 on our crowdfunding campaign to finance the many expenses associated with the creation of such an ambitious project.
Please click on the image below or use the following shortlink to share/help – everything helps: http://kck.st/28KlbPk 🙂
The project is a climbable sinuous tower made from off-the-shelf timber and digitally designed via algorithmic rules. One thousand “tangent” and light wooden pieces, stenciled with inspiring sentences, are strongly held in position by a helicoid sub-structure rotating along a central spine which also forms a safe staircase to climb on. Each one of the poetic branches faces a different angle, based on the tangent vectors of a sweeping sine curve. In line with this year’s theme, the piece is reminiscent of Leonardo’s Vitruvian man’s movement, helicoid inventions such as the “aerial screw” helicopter and Chambord castle helicoid staircase as well as his deep, systematic, understanding of the rules behind form to create art. From a wave to a flame all the way to a giant desert cactus, the complex simplicity of the art piece will trigger many interpretations, many dreams.
The art piece attempts to maximize an inexpensive material by using the output of an algorithm – (the value of the piece being the mathematics behind it, as well as the experience, not the materials being used). The computer outputs information to locate the column, sub-structure and tangents. We believe digital tools in design are giving rise to a new Renaissance, in which highly sophisticated designs, mimicking natural processes by integrating structural and environmental feedback, can be achieved at a very low cost. We worked very closely with our structural engineer format, sharing our algorithms, to give structural integrity to the piece and resist the strong climbing and wind loads. There are now three “legs” to our proposal, each rotated from each other at 60 degrees angles around a central solid spine, to ensure the stability of the piece, similarly to a tripod. The tangents are not just a decoration, they act as a spiky balustrade to prevent people from falling.
We have a fantastic team for the project: Philip Olivier, Eira Mooney, Maialen Calleja, Aaron Porterfield, Sebastian Morales, Antony Dobrzensky, Laura Nica, Karina Pitis, Hamish Macpherson, Jon Goodbun, Yannick Yamanga, Matthew Springer ,Josh NG ,Lola Chaine, Dror BenHay, Peter Wang, Charlotte Chambers, Michael DiCarlo, Sandy Kwan.
Geometry can be found on the smallest of scales, as is proven by the beautiful work of the butterfly in creating her eggs. The butterflies’ metamorphosis is a recognised story, but few know about the start of the journey. The egg from which the caterpillar emerges is in itself a magnificently beautiful object.
Geometry can be found on the smallest of scales, as is proven by the beautiful work of the butterfly in creating her eggs. The butterflies’ metamorphosis is a recognised story, but few know about the start of the journey. The egg from which the caterpillar emerges is in itself a magnificently beautiful object. The tiny eggs, barely visible to the naked eye, serve as home for the developing larva as well as their first meal.
Each kind of butterfly has its unique egg design, creating a myriad of beautiful variations.
These are some of the typical shapes that each family produce.
But it is the Lycaenidae family that have the most geometrical and intricate eggs.
Biomimetics, or biomimicry is an exciting concept that suggests that every field and industry has something to learn from the natural world. The story of evolution is full of problems that have been innovatively solved.
There are thousands of species of butterfly, each with their unique egg design. A truncated icosahedron for a frame, the opposite of a football. Instead of panels pushed out, they are pulled in.
Fractals are commonly occurring in nature, and can be described as a never-ending pattern on different scales. People are subconsciously familiar with fractals, so are inherently more relaxed when surrounded by them.
3D Printing is a relatively new technology that is set to change our world. Innovations in the uses of 3D printers, combined with falling costs, means that they could be a ubiquitous tool in every home and industry. 3D printers and scanners are already used a great deal in everything from the biomedical field to art studios, and experiments are currently being done to construct entire homes. This technology is in its infancy, and it is exactly for this reason that every effort should be taken to research its potential. It is common to use 3D printers in architecture to show small working models, I would like to now use it to make a large and complex structure at full scale.
This research will underpin the design of a sculptural installation in which people can interact with live butterflies. With the ever-declining numbers of butterflies worldwide and in the UK, conservation and education are paramount.
The link between butterflies and humans in our ecosystem is one that is vital and should be conserved and celebrated.
I can imagine an ethereal space filled with dappled light where people can come for contemplation and perhaps their own personal metamorphosis.
—Tia
In mathematics, a Scherk surface (named after Heinrich Scherk in 1834) is an example of a minimal surface. A minimal surface is a surface that locally minimizes its area (or having a mean curvature of zero). The classical minimal surfaces of H.F. Scherk were initially an attempt to solve Gergonne’s problem, a boundary value problem in the cube.
The term ‘minimal surface’ is used because these surfaces originally arose as surfaces that minimized total surface area subject to some constraint. Physical models of area-minimizing minimal surfaces can be made by dipping a wire frame into a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire frame. However the term is used for more general surfaces that may self-intersect or do not have constraints. For a given constraint there may also exist several minimal surfaces with different areas (for example, minimal surface of revolution, Saddle Towers etc.).
Scherk’s minimal surface arises from the solution to a differential equation that describes a minimal monge patch (a patch that maps [u, v] to [u, v, f(u, v)]). The full surface is obtained by putting a large number the small units next to each other in a chessboard pattern. The plots were made by plotting the implicit definition of the surface.
An implicit formula for the Scherk tower is:
sin(x) · sin(z) = sin(y),
where x, y and z denote the usual coordinates of R3.
Scherk’s second surface can be written parametrically as:
x = ln((1+r²+2rcosθ)/(1+r²-2rcosθ))
y = ((1+r²-2rsinθ)/(1+r²+2rsinθ))
z = 2tan-1[(2r²sin(2θ))/(r-1)]
for θ in [0,2), and r in (0,1).
Scherk described two complete embedded minimal surfaces in 1834; his first surface is a doubly periodic surface, his second surface is singly periodic. They were the third non-trivial examples of minimal surfaces (the first two were the catenoid and helicoid). The two surfaces are conjugates of each other.
Scherk’s first surface
Scherk’s first surface is asymptotic to two infinite families of parallel planes, orthogonal to each other, that meet near z = 0 in a checkerboard pattern of bridging arches. It contains an infinite number of straight vertical lines.
Scherk’s second surface
Scherk’s second surface looks globally like two orthogonal planes whose intersection consists of a sequence of tunnels in alternating directions. Its intersections with horizontal planes consists of alternating hyperbolas.
Other types are:
Scherk’s surface can have many iterations, according to the number of saddle branches, number of holes, turn around the axis and bends towards the axis. Some of the design iterations and adaptations of the system are presented below:
Scherk’s Surface can be adapted to several design possibilities, with multiple ways of fabrication. Interlocked slices using laser cut plywood sheets, folded planes of metal or CNC stacked wooden slices. With its versatile and flexible form it is adaptable to any interior space as an installation or temporary furniture.
Some images of our final cross-crit of the year! Our students presented their Brief03:FutureCities. Have a look at how the next generation of architects envision the future of our cities.
Thank you to Andrei Jipa, Kester Rattenbury and Lindsay Bremner. Final sprint to the portfolio submission and end of year!
The Atlantic Forest in southern Brazil has long been viewed as a vast quilt of rain forest interspersed by small river outposts. The surging population growth has seen these remote settlements transform this ancient rural vision to an expansive city scale. Cidade de Árvores (City of Trees) envisions an environment where both the city’s infrastructure and its inhabitants maintain a symbiotic relationship with the surrounding natural environment. Built entirely from locally grown timber, the Cidade de Árvores exists as a network of steam bent beams, joined to form a structural space frame. Like the forest, the frame is allowed to grow and develop organically over time with inhabitants adding to structure to meet their requirements. The city is powered through the use of micro wind turbine electricity generation which manifests as a series of towers scattered throughout the forest. For the city and the environment to function in harmony, the city access routes manifest as elevated walkways around large courtyards, allowing light to penetrate to the forest floor.
Hello everyone, here are couple pictures from our last tutorial showing some of the best future cities that our students are currently working on in response to the Brief03:FutureCities.
From an open-source green city living in symbiosis with the Amazonian forest to a terra-forming city on Mars made from 3d printing robots carrying giant Fresnel lenses all the way to a rent-for-advertisement growing infrastructure covered with LED screens – we are look forward to discovering with you the cities of tomorrow from our wonderful and creative DS10 students next Thursday at the Interim Crit.
Our WeWantToLearn.net students have submitted their final portfolios! After an inspiring day going through the projects, we gave them a final mark with the help of the other tutors from the University of Westminster. Below is a selection of the inspiring work that was submitted.
The projects range from a temple at the Burning Man Festival made of an unprecedented reciprocal structure (Joe Leach) to a 3D printed city based on a fractal algorithm and built using potato starch-based plastic grown by the inhabitants of Solanopolis (Andrei Jipa) all the way to a Pop-Up plywood mosque for Trafalgar Square (Josh Haywood) and a lace tent for the London Burlesque Festival (Georgia Collard-Watson) as well as a Kabbalah Centre in the City made from large spiralohedron (Jessica Beagleman), our students have explored a new kind of joyful and spiritual Architecture using the latest digital design and fabrication technique.