Archive

Frei Otto

 

dream-catchers-research

Dream Catchers by Nick Huard

Legend of the Dream Catcher

‘The legend of a dream catcher began long time ago, when the child of a Woodland chief fell ill. Unsettled by fever, the child was plagued with bad dreams and unable to sleep. In an attempt to heal him, the tribe’s Medicine Woman created a device that would ‘catch’ these bad dreams. Forming a circle with a slender willow branch, she filled the centre with sinew, using a pattern borrowed from our brother the Spider, who weaves a web. This dream catcher was then hung over the bed of the child. Soon the fever broke, and the child slept peacefully.

It is said that at night, when dreams visit, they are caught in the dream catcher’s web, and only the good dreams are able to find their way to the dreamer, filtering down through the feather. When the warmth of the morning sun arrives, it burns away the bad dreams that have been caught. The good dreams, now knowing the path,visit again on other nights.’ (Oberholtzer, 2012, p9).

 

Origins

Dreamcatchers originated with the Ojibwe, a tribe of Native Americans scattered throughout the areas of the lake country in northern Michigan, Wisconsin, and Minnesota, and along the southern border of Canada, along the shores of Lakes Huron, Superior and Michigan, whose survival relied on fishing, hunting and trapping.  

Traditionally, the dream catchers were made by tying sinew strands onto a few inches in diameter round or tear-shaped frames of willow and were often wrapped in leather.

The spiritual life of the Ojibwa centred around the Midewiwin, the Grand Medicine Society and focused on the individual spiritual growth, gaining the insight through their dreams or visions.

 

untitled-9

Grey Owl repairing an Ojibwa-style shoe

Mystical Experience

My project is a re-interpretation of the beliefs that dreams have magical qualities with the ability to change or direct one’s path in life. The bawaajige nagwaagan intends to create a mystical experience, where people are caught inside, similar to the way that bad dreams are caught in the dreamcatcher’s web, and good dreams escape through the centre. The participants are encouraged to climb through the centre and escape their bad dreams and feelings, releasing their spirit through the enclosure. Now they can sleep in the peaceful environment, stimulated by the fantasy of glowing feathers and luminescent rope structures. The pavilion aims for people to sleep, relax and free themselves from stress while being protected by the magical webs of the dream catcher.

 

final-render-night-green

The Bawaajige Nagwaagan at night

render-night-detail

Close-up render at night

Romantic essence of the Native American Culture

The proposal is a celebration of the romantic essence of the Native American Culture. The large scale, three dimensional net is inspired by the native methods and techniques of making dream catchers. It is a manifestation of the traditions and significance of the Native Americans, paying respect and pledging support to the indigenous people of America.

The structure situated in the Burning Man festival commemorates the ceremonies of Native Americans, dedicated to acquiring an insight through dreams and visions. Fasting, or giving up of certain necessities for a certain length of time was a common practice used to enhance one’s ability to access different dreams or visions. Another method was to pour water over hot rocks to produce steam, which enhanced the occurrence of dreams, used as source of introspection. These rituals relate to the festival’s assertion of disconnecting from the necessities of our contemporary world, supplemented by the extreme weather conditions, which are hoped to encourage reflection.

The pavilion responds and works together with the Black Rock desert’s environment, and adds to the wider cultural context of leaving behind the essentials and expectations of the contemporary world while creating a moment for contemplation and tranquility in the magical weaves of the dream catcher.

 

new-dream-catcher-final-day-render

The Bawaajige Nagwaagan during the day

Proposal Development_System

rotation-increments

untitled-2

dream-catcher-stages

 

1.Aleksandra Wojciak_90gsm_A1_Merylbone_west

Form Experimentation_Platonic Forms

Hexahedron

model-1

Development Model

 

hexahedron-diagrams

Diagrams explaining model assembly

 

Tetrahedron

tetra-models-copy2

1:10 Model

 

models-tetrahedron

Diagrams explaining model assembly

 

Physical Description

The structure will be composed out of three, seven meters in diameter, dream catchers, tilted to form a tetrahedron. Each dream catcher’s net will be made out of 275 meters, 18mm, synthetic hemp rope which will be entwined in 1320 meters of 3mm fluorescent cord. Attached to the frame uv lights will make the fluorescent rope glow at night. Three rings hold the net structure together, with the bottom ring anchored to the ground, made out of T-shape plywood frames. The web of the frame will be 4 layers of 15mm ‘banana’ shaped pieces which will create a circle, together with 4 layers of 230mm x 2400mm x 9mm flange pieces bent in shape of the banana edge. Smaller rings, supporting the centre of the dreamcatcher net will be of similar structure, with 2 layers of banana pieces and 2 layers of 150mm x 2400m x 9mm flange pieces, bent in shape. The frame will be wrapped in 13500 meters of 8mm synthetic hemp with attached fluorescent fabric feathers.

 

axo_b_nagwagan

Axonometric View-Construction Development

 

assembly 1

Frame’s web assembly

assmbly 2

Frame’s flange assembly

 

assembly 3

Initial assembly diagrams

thebn_uv-lighting


UV lighting-Construction Development

Testing Ideas in 1:1 Scale

 

1-1-model-photograph

1:1 Scale Test Model exploring the possibilities of glowing net structure and its connections.

Assembly of the net is inspired by a macrame knotting technique rather than weaving which means that the net could be made out of smaller 15 meters long pieces, rather than one 275 m coil of rope, making it easier to assemble and repair. Rope is anchored to the frame with thimbles and shackles, attached to the bolted staple on the plate. The rope is connected with simple S-shape stainless steel hooks. After testing the net I found that although these are easy to assemble, they can create some movement in a connection, therefore I am planning on exploring the idea of ferrules, which could be crimped in place.

1-1-model-1

ola-ds10-dream-portfolio-3

Photographs of 1:1 Scale Model

 

 

 

All living organisms are composed of cells, and cells are fluid-filled spaces surrounded by an envelope of little material- cell membrane. Frei Otto described this kind of structure as pneus.

From first order,  peripheral conditions or the packing configuration spatially give rise to specific shapes we see on the second  and third order.

This applies to most biological instances.  On a larger scale, the formation of beehives is a translated example of the different orders of ‘pneu’.

Interested to see the impact of lattice configuration on the forms, I moved on to digital physics simulation with Kangaroo 2 (based on a script by David Stasiuk). The key parameters involved for each lattice configuration are:

Inflation pressure in spheres
Collision force between the spheres
Collision force of spheres and bounding box
Surface tension of spheres
Weight.

 

Physical exploration is also done to understand pneumatic behaviors and their parameters.

This followed by 3D pneumatic space packing. Spheres in different lattice configuration is inflated, and then taken apart to examine the deformation within. This process can be thought of as the growing process of seeds or pips in fruits such as pomegranates and citrus under hydrostatic pressure within its skin; and dissections of these fruits.

As the spheres take the peripheral conditions, the middles ones which are surrounded by spheres transformed into Rhombic dodecahedron, Trapezoid Rhombic dodecahedron and diamond respectively in Hex Grid, FCC Grid,  and Square Grid. The spheres at the boundary take the shape of the bounding box hence they are more fully inflated(there are more spaces in between spheres and bounding box for expansion).

   

Physical experimentation has been done on inflatables structures. The following shows some of the outcome on my own and during an Air workshop in conjunction with Playweek led by Will Mclean and Laylac Shahed.

To summarize, pneumatic structures are forms wholly or mainly stabalised by either
– Pressurised difference in gas. Eg. Air structure or aerated foam structures
– liquid/hydrostatic pressure. Eg. Plant cells
– Forces between materials in bulk. Eg. Beehive, Fruits seeds/pips

There is a distinct quality of unpredictability and playfulness that pneumatic structures could offer. The jiggly nature of inflatables, the unpredictability resulted from deformation by compression and its lightweightness are intriguing. I will call them as pneumatic behaviour. I will continually explore what pneumatic materials and assembly of them could offer spatially in Brief 02. Digital simulations proved to be helpful in expressing the dynamic behaviours of pneumatic structures too, which I intend to continue.

 

An exploration of the simplest Hyperbolic Paraboloidic ‘saddle’ form has lead to the development of a modular system that combines the principles of the hypar (Hyperbolic Paraboloid) and elastic potential energy.

A hyperbolic paraboloid is an infinite doubly ruled surface in three dimensions with hyperbolic and parabolic cross-sections. It can be parametrized using the following equations:

Mathematical:   z = x2 – yor  x = y z

Parametric:   x(u,v)=u   y(u,v)=v   z(u,v)=uv

The physical manifestation of the above equations can be achieved by constructing a square and forcing the surface area to minimalise by introducing cross bracing that has shorter lengths than the  square edges.

Hypar01Hypar02

A particular square hypar defined by b = n * √2 (b=boundary, n=initial geometry or ‘cross bracing’) thus constricting the four points to the corners of a cube leads to interesting tessellations in three dimensions.

Hypar03Hypar04

Using a simple elastic lashing system to construct a hypar module binds all intersections together whilst allowing rotational movement. The rotational movement at any given intersection is proportionally distributed to all others. This combined with the elasticity of the joints means that the module has elastic potential energy (spring-like properties) therefore an array of many modules can adopt the same elastic properties.

Hypar05Hypar06

The system can be scaled, shaped, locked and adapted to suit programmatic requirements.

DSC_0794

140214 Burning Man Application S Images

Models of The Wind Anemones

The Wind Anemones are The Playa’s walking, floating sea creatures. While the seas animals survive and are transported by the waters currents – these wind animals live and move using the energy provided by air. They are living, interactive and mobile – huge, rolling, climbing frames.

The Anemones are lively creature, light and agile they moves ceaselessly, desperate to escape their tethers. The creatures are ethereal, elegant and imposing. During the day they want only to play with the other inhabitants of The Playa, encouraging them to climb and view them.

Although large, the anemones are lightweight and strong – their wide spanning arms signal to all who pass them while their rustling sails propel them ceaselessly. When night falls the Wind Anemones become more subdued – their gently glowing hands beckon to the burners and their arm-top lights echo the noises produced on The Playa. These animals are living beings, both climbing frames and beacons they long to inspire, interact with and inhabit The Playa.

140214 Burning Man Application S Images4

Daytime render of The Wind Anemones

140214 Burning Man Application Images5

Nightime render of The Wind Anemones

Physical Description:

The Wind Anemone’s are the sea creatures of The Playa. Instead of moving and feeding with the seas currents and tides The Wind Anemones are a constructed representation of desert creatures. In the vast, arid, wilderness they are the only being that can survive, powered only by the winds energy.

Structurally the Anemones are super-lightweight bamboo sculptures allowing them to dance and move in the deserts unforgiving climate whilst being safe for people to climb and interact with. Each Anemone has 48 identical bamboo arms each capped with a painted polystyrene hand, glowing LED bulb and sail.

The fabric sails are both the energy harvesting component of the creatures and a reflection of the silk road that the festival represents. The many repeated elements of each Anemone means that they are cheap to build and easy to assemble. The tough, light limbs are resilient extremities; both mast and arm. While the sails create movement and foot holds for climbing.

Each Anemone is tether securely to a post again reflecting the living nature of the creatures and ensuring that they never role too far from their home. These tethers are strung with LED lights to reflect the lights of the Anemone’s and to signal the location of each tether to ensure safety at night.

The LEDs on the Anemone’s arms and tethers will be programmed to react to the sounds of The Playa, making the Anemone’s both react with and reflect the activity occurring around them.

140214 Burning Man Application Images2

Construction of the Wind Anemone

140214 Burning Man Application Images3

Construction Axo of The Wind Anemone

This model uses the process I have previously explored, of minimal path systems by Frei Otto, but attempts to take the concept a stage further to create a minimal structural system.

The thread lengths are given approximately a 12.5% over-length leaving them quite loose and messy when dry. The model is then dipped in a water and soap solution and hung upside down. The wet threads bunch together, as seen in previous experiments, but due to the increased over length they also dip downwards creating a domed form. When dry, the model can be coated with resin in order to cast the form. The model can then be turned over maintaining the rigid minimal structural system. This process generates a strangely appealing aesthetic.

Below is our schedule and some pictures from DS10’s Unit Trip to Stuttgart which took place from the 4th until the 7th November 2011:

-Thursday 3rd: Visit of the Institute for Computational Design (ICD) by Prof. Achim Menges and lecture on the institute by the latter and Sean Alhquist.

– Friday 4th: Visit to the Baubotanik Structures with Daniel Schonle. Visit to the Mercedes Benz Museum by UN Studio. Visit to the Institute for Lightweight Structure (ILEK) with Christian Bergman. Party at the School of Architecture at the University of Stuttgart.

-Saturday 5th: Sleep. Visit to the Porsche Museum by Delugan Meissl. Relax at the Shwaben Quellen Spa. More Party.

-Sunday 6th: Visit to the Platanenkubus by and with Ferdinand Ludwig.

Click on the Thumbnails for Larger Slideshow 

This slideshow requires JavaScript.