‘Entwine’ – Submission for Burning Man 2016

Final Day Render

INSTALLATION SUBMISSION TO BURNING MAN 2016 – ‘Entwine’

Entwine is a timber frame structure which has been developed through rigorous physical and digital testing to ensure a safe climbing frame for all to enjoy. When exploring Entwine, the vast expanse of the playa is framed through beautiful intertwining curved plywood beams. Burners can view the event from glorious vantage points nestled amidst multiple communal spaces that encourage interaction and play.

The structure predominantly consists of strips of curved plywood which have been connected together using pioneering construction techniques, specifically the utilisation of conflicting forces, similar to those apparent in ‘Tensegrital’ design. Drawing inspiration from Leonardo Da Vinci and his various experimentations with physical form, ‘Entwine’ is a marvel of geometry. The piece is formed from an arrangement of 19 octahedral components, each consisting of six beams, which are paired and positioned upon one of three axis. These three elements represent the unity of man, nature and the universe that surrounds us.

Close up Render.jpgFinal Close Up RenderFINAL Night Render

Each modular component is tessellated to form an octahedral space frame structure. The rigidity resulting from this tessellation is in direct contrast to the curving structural beams which exude an organic aesthetic. As Burners view Entwine from different aspects, a remarkable array of different patterns and forms are revealed, many bearing resemblance to sacred geometry, specifically the Flower of Life, which was a significant study within Leonardo Da Vinci’s work.

"DCIM100MEDIA"

Entwine is unorthodox in its composition, and this is a contributing factor to what makes it so unique: Each module is constructed through tensioning layers of ¼ inch thick plywood, which are then mechanically fixed together when a desired radius has been reached. By laminating the plywood in this manner, each component retains its curvature but remains in compression. These conflicting forces are integral to the design of Entwine: Each octahedral module is constructed from these compressed plywood elements, and are held together with tensioning ropes creating a structure of isolated components in compression within a net of continuous tension.MODEL PHOTOGRAPHSMODEL PHOTOGRAPHS 2The form of the structure is based on the octahedron, which is a Platonic solid composed of eight equilateral triangles; four of which meet at each vertex. One of the eight triangles acts as a base for the structure. This results in one edge creating a small cantilever, whilst the counter edge can be anchored to the ground. As previously studied by Buckminster Fuller, the geometry of an octahedron is particularly good at forming space frames with a strong cantilevers.

section.jpg

Entwine Construction Proposal

The participatory aspect of the installation voids the role of the ‘spectator’ and creates more active engagement. In many of Leonardo Da Vinci’s paintings, his subjects are framed by surreal, dreamlike landscapes. This is reflected within Entwine: As Burners become part of the installation, they are framed by the awe inspiring backdrop of Black Rock Desert: In many ways Entwine becomes the artist, the playa the canvas, and Burners the subjects.

“the artist is not a special sort of person, but every person is a special sort of artist.”

This is not only true in the sense of physical involvement but during the construction the ‘spectator’ becomes involved in making strategic decisions in the realisation of the work of art. The development, design and construction of the project embodies the principles of self-reliance and self-expression, whilst a proposal that is safe, interactive and beautiful will be gifted to the community at Burning Man.

Entwine’s curving form will be illuminated using LED spot lights to enhance the organic patterning existent within the structure. This allows the full form of the structure to be fully visible.

Bending Lattice System

My initial studies stemmed from researching into Stellation. This, in simple terms, is the process of extending  polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions, to form a new figure. Through researching the application of this process, I came across the sculptures created by George Hart, as he has experimented with stellated geometries to which are subdivided to create mathematical interweaving structures.Stellation 1

My Research into the method and calculations of George Hart’s Mathematical Sculpture’s focused on the sculpture ‘Frabjous’. Through rigorous testing and model making I have understood the rules behind the complex form. This is based on the form of a stellated icosahedron, whose shape is contained within a dodecahedron.grey card model

Lines are drawn from one point, to a point mirrored at one edge of the face of the dodecahedron form – as shown in the diagram. This creates intersecting lines at each face as you can see from the diagrams below. Each dividing line has two intersection points, with symmetry at the center of the line. The sculpture aims to avoid the intersections of these lines by introducing a sine curve with the domain 0 to 2*pi. As you can see, each component is exactly the same – for this model, 30 components are used.

george hart diagram 1george hart diagram 2george hart diagram 3

`To simplify the construction of the sculpture, I extracted a build-able section which uses ten components in total. Two of these sections are then weaved together and joined up by a further ten single components to form the entire sculpture.Diagram Sequence of Researched SculptureOne Component ImageryGeometry 2

Following this research, I extracted the concept of avoiding the intersection and subdivided a cube with lines from each corner of the cube. These lines were then weaved around eachother using a sine curve with a domain of 0 to pi. I then mirrored the curves and rotated them to create an intertwining form.Avoiding Self Intersection 2

Another test was created with the same process, however subdividing a cube using the midpoint of each face. – This creates an octahedral geometry.Avoiding Self Intersection octahedron

Using this interweaving geometry, I have created different three dimensional arrays to create a spatial form. The concept of avoiding intersections naturally cause a structure to fail. To form a structurally efficient version of this geometry, I introduced the idea of a reciprocal structure, and allowed the beams to self support by resting on eachother. This did not create a structure strong enough to stand on, however through adding a cube whose dimensions are equal to the width of the beams, the structure became very strong.

Avoiding Self Intersection octahedron 3

Testing the component at a small scale required the design of a joint which allowed me to assemble these components together through interlocking elements. Each beam element slots into the joint; When two joints and two beams are connected together the curves naturally stay in place due to the angle cut into the joint. Three of these connected elements together form the component.

Diagraming the Joint

As mentioned previously, avoiding intersections create inefficient structures – For this small scale experimentation, the concept of Tensegrity was implemented. Tensegrity is a structural principle based on using isolated compression components within a net of continuous tension, allowing the compression members to not need to touch each other. This model was constructed using 1.5mm plywood which has been laser cut; the modularity of the system ensures minimal material wastage.

Construction Sequence of ModelModel Photographs

The three dimensional array of this geometry creates many interesting shapes and patterns when viewed from different angles – this is visible in the following video:

 

 

 

 

Infinite Territory

Burnign man render REVISED

 

‘Infinite Territory’ invites burners from the surrounding playa to it’s periphery; its simple mirrored cubic exterior reflects the picturesque landscapes, unpredictable weather and inspirational artworks, creating an experience of both the real and the reflected whilst encouraging unexpected discoveries throughout the journey of the Burning Man Festival. At night, the cube will reflect the vibrancy of the playa. Illuminated strips of colourful light will glow at each edge to allow for clear visibility and frame the vistas; encouraging physical exploration within the structure and providing an immersive experience that juxtaposes the setting of the desert, and in doing so, offers a place for discovery; to recognise our inner selves and the reality of those around us.

The real gem of the ‘Infinite Territory’ is revealed from within – the burner will climb into a boundless space of infinite reflections that will hypnotise and bewilder, whilst creating a place for contemplation and speculation. Illuminated patterns will flicker and grow through key-frames of acrylic. Within this immersive digital dimension will be soft items providing a refuge from the elements. The installation will be made up of mirrored panels at each face of the cube. Three of these faces will consist of panels built with five layers of transparent perspex – each panel consists of a different pattern and when light is moved from one to the other it creates a dynamic lighting animation.

 

FINAL RENDER

 

The primary structure of ‘Infinite Territory’ will be a timber framed cube using three meter length beams. The lateral stability will be reinforced using rigid panels of mirror and acrylic that shall form the artwork for the internal visual of the cube. The frame and the perspex/mirrored panels will be joined together (including any internal lighting effects) with metal brackets to reinforce the structure. This will help the overall mass resist wind loads and the harsh weather conditions of the Nevada Desert. The installation will consist of off-site fabrication of each panel leaving on-site construction reduced to the assembly of it’s component parts.

‘Infinite Territory’ will leave no trace wherever it goes; using a sheet size of 1.5m x 3m, the components of the installation allow for easy construction and deconstruction. Its weight and self-supporting robust construction means that no foundations are needed and the playa is left untouched beneath its surface.

 

 

The lighting will feature a pre-sequenced animation of LED strip lights that will illuminate the patterns giving the effect that is shown in the conceptual visuals. The lighting will be located at two opposite edges of each acrylic panel, and its components will be visually hidden within the structure. Externally, colourful electroluminescent wire at each edge of the cube will allow for clear visibility of the mirrored surface whilst framing the vistas.

 

IMAGE

 

 

 

 

Pattern Formation of Reaction-diffusion

Diffusion occurs when a substance moves from an area of high concentration to an area of low concentration, eventually reaching a state of equilibrium. When this substance is influenced by a local chemical reaction, it becomes unstable – it is this instability that causes the pattern formation of animals. 
.
During an animals embryonic phase, genes that carry skin pigment can be activated by a chemical signal called a morphogen. If there is a high concentration with an even distribution rate of this morphogen, a very even colour is produced, like the elephant, whereas an uneven distribution rate will form patterns such as the spots of a leopard or the stripes of a zebra. This process is known as Reaction-diffusion.  Historically, the first model of this morphogenesis was proposed by British Mathematician, Alan Turing, consisting of coupled partial differential equations that describe the changes and patterns created between these activator-inhibitor particles over time.
   .
To understand the movement of a substance from a region of high concentration to a region of low concentration, I began by observing the diffusion of substances with different viscosity through water. Testing this with a variety of parameters i.e. fluid temperature, concentration and viscosity enabled me to monitor the differing properties of the fluids during the diffusion process.
Diffusion 3
Following this, I observed how a liquid compound changed with the introduction of a ‘reaction’. I used milk which contains both water and proteins/fats that when fresh are in a stable state. To simulate the chemical reaction, soap was added to the milk which reacts with the fats and proteins to separate them from the water particles – this was visualized with the addition of the dye.
   

Diffusion 5
Diffusion 6Diffusion 7
Diffusion 8Diffusion 9
To study this reaction-diffusion process as a time based system, I took videos of the above experiment and broke them down into a sequence of images at a rate of 10 frames per second. 3 dimensional interpretations of these patterns have been created as shown below. Further experimentation in larger scales shall inform a developed proposal of a pavilion for the Burning Man Festival.
Diffusion 12Diffusion 13Diffusion 14DSC_0837
Additional studies of these patterns using perspex with a controlled light source creates a very different approach, and shall influence designs for a temporary installation at Buro Happold.
Acrylic Photos