The Nature of Gridshell Form Finding

Grids, shells, and how they, in conjunction with the study of the natural world, can help us develop increasingly complex structural geometry.

Foreword

This post is the third installment of sort of trilogy, after Shapes, Fractals, Time & the Dimensions they Belong to, and Developing Space-Filling Fractals. While it’s not important to have read either of those posts to follow this one, I do think it adds a certain level of depth and continuity.

Regarding my previous entries, it can be difficult to see how any of this has to do with architecture. In fact I know a few people who think studying fractals is pointless.

Admittedly I often struggle to explain to people what fractals are, let alone how they can influence the way buildings look. However, I believe that this post really sheds light on how these kinds of studies may directly influence and enhance our understanding (and perhaps even the future) of our built environment.

On a separate note, I heard that a member of the architectural academia said “forget biomimicry, it doesn’t work.”

Firstly, I’m pretty sure Frei Otto would be rolling over in his grave.

Secondly, if someone thinks that biomimicry is useless, it’s because they don’t really understand what biomimicry is. And I think the same can be said regarding the study of fractals. They are closely related fields of study, and I wholeheartedly believe they are fertile grounds for architectural marvels to come.

7.0 Introduction to Shells

As far as classification goes, shells generally fall under the category of two-dimensional shapes. They are defined by a curved surface, where the material is thin in the direction perpendicular to the surface. However, assigning a dimension to certain shells can be tricky, since it kinda depends on how zoomed in you are.

A strainer is a good example of this – a two-dimensional gridshell. But if you zoom in, it is comprised of a series of woven, one-dimensional wires. And if you zoom in even further, you see that each wire is of course comprised of a certain volume of metal.

This is a property shared with many fractals, where their dimension can appear different depending on the level of magnification. And while there’s an infinite variety of possible shells, they are (for the most part) categorizable.

7.1 – Single Curved Surfaces

Analytic geometry is created in relation to Cartesian planes, using mathematical equations and a coordinate systems. Synthetic geometry is essentially free-form geometry (that isn’t defined by coordinates or equations), with the use of a variety of curves called splines. The following shapes were created via Synthetic geometry, where we’re calling our splines ‘u’ and ‘v.’

A-Barrel-Vault
Uniclastic: Barrel Vault (Cylindrical paraboloid)

These curves highlight each dimension of the two-dimensional surface. In this case only one of the two ‘curves’ is actually curved, making this shape developable. This means that if, for example, it was made of paper, you could flatten it completely.

B-Conoid

Uniclastic: Conoid (Conical paraboloid)

In this case, one of them grows in length, but the other still remains straight. Since one of the dimensions remains straight, it’s still a single curved surface – capable of being flattened without changing the area. Singly curved surfaced may also be referred to as uniclastic or monoclastic.

7.2 – Double Curved Surfaces

These can be classified as synclastic or anticlastic, and are non-developable surfaces. If made of paper, you could not flatten them without tearing, folding or crumpling them.

C-Dome.gif
Synclastic: Dome (Elliptic paraboloid)

In this case, both curves happen to be identical, but what’s important is that both dimensions are curving in the same direction. In this orientation, the dome is also under compression everywhere.

The surface of the earth is double curved, synclastic – non-developable. “The surface of a sphere cannot be represented on a plane without distortion,” a topic explored by Michael Stevens: https://www.youtube.com/watch?v=2lR7s1Y6Zig

D-Saddle.gif
Anticlastic: Saddle (Hyperbolic paraboloid)
This one was formed by non-uniformly sweeping a convex parabola along a concave parabola. It’s internal structure will behave differently, depending on the curvature of the shell relative to the shape. Roof shells have compressive stresses along the convex curvature, and tensile stress along the concave curvature.
Pringle
Kellogg’s potato and wheat-based stackable snack
Here is an example of a beautiful marriage of tensile and compressive potato and wheat-based anticlastic forces. Although I hear that Pringle cans are diabolically heinous to recycle, so they are the enemy.
11 Tensile and Compressive behaviour of shells.jpg
Structural Behaviour of Basic Shells [Source: IL 10 – Institute for Lightweight Structures and Conceptual Design]

7.3 – Translation vs Revolution

In terms of synthetic geometry, there’s more than one approach to generating anticlastic curvature:
E-Hyperbolic-Paraboloid-Saddle.gif
Hyperbolic Paraboloid: Straight line sweep variation

This shape was achieved by sweeping a straight line over a straight path at one end, and another straight path at the other. This will work as long as both rails are not parallel. Although I find this shape perplexing; it’s double curvature that you can create with straight lines, yet non-developable, and I can’t explain it..

F-Hyperbolic-Paraboloid-Tower.gif
Ruled Surface & Surface of Revolution (Circular Hyperboloid)
The ruled surface was created by sliding a plane curve (a straight line) along another plane curve (a circle), while keeping the angle between them constant. The surfaces of revolution was simply made by revolving a plane curve around an axis. (Surface of translation also exist, and are similar to ruled surfaces, only the orientation of the curves is kept constant instead of the angle.)
 
Cylinder_-_hyperboloid_-_cone.gif
Hyperboloid Generation [Source:Wikipedia]

The hyperboloid has been a popular design choice for (especially nuclear cooling) towers. It has excellent tensile and compressive properties, and can be built with straight members. This makes it relatively cheap and easy to fabricate relative to it’s size and performance.

These towers are pretty cool acoustically as well: https://youtu.be/GXpItQpOISU?t=40s

 

8.0 Geodesic Curves

These are singly curved curves, although that does sound confusing. A simple way to understand what geodesic curves are, is to give them a width. As previously explored, we know that curves can inhabit, and fill, two-dimensional space. However, you can’t really observe the twists and turns of a shape that has no thickness.

Geodesic Curves - Ribon.jpg
Conic Plank Lines (Source: The Geometry of Bending)

A ribbon is essentially a straight line with thickness, and when used to follow the curvature of a surface (as seen above), the result is a plank line. The term ‘plank line’ can be defined as a line with an given width (like a plank of wood) that passes over a surface and does not curve in the tangential plane, and whose width is always tangential to the surface.

Since one-dimensional curves do have an orientation in digital modeling, geodesic curves can be described as the one-dimensional counterpart to plank lines, and can benefit from the same definition.

The University of Southern California published a paper exploring the topic further: http://papers.cumincad.org/data/works/att/f197.content.pdf

8.1 – Basic Grid Setup

For simplicity, here’s a basic grid set up on a flat plane:

G-Geocurves.gif
Basic geodesic curves on a plane

We start by defining two points anywhere along the edge of the surface. Then we find the geodesic curve that joins the pair. Of course it’s trivial in this case, since we’re dealing with a flat surface, but bear with me.

H-Geocurves.gif
Initial set of curves

We can keep adding pairs of points along the edge. In this case they’re kept evenly spaced and uncrossing for the sake of a cleaner grid.

I-Geocurves.gif
Addition of secondary set of curves

After that, it’s simply a matter of playing with density, as well as adding an additional set of antagonistic curves. For practicality, each set share the same set of base points.

J-Geocurves.gif
Grid with independent sets

He’s an example of a grid where each set has their own set of anchors. While this does show the flexibility of a grid, I think it’s far more advantageous for them to share the same base points.

8.2 – Basic Gridshells

The same principle is then applied to a series of surfaces with varied types of curvature.

K-Barrel
Uniclastic: Barrel Vault Geodesic Gridshell

First comes the shell (a barrel vault in this case), then comes the grid. The symmetrical nature of this surface translates to a pretty regular (and also symmetrical) gridshell. The use of geodesic curves means that these gridshells can be fabricated using completely straight material, that only necessitate single curvature.

L-Conoid
Uniclastic: Conoid Geodesic Gridshell

The same grid used on a conical surface starts to reveal gradual shifts in the geometry’s spacing. The curves always search for the path of least resistance in terms of bending.

M-Dome
Synclastic: Dome Geodesic Gridshell

This case illustrates the nature of geodesic curves quite well. The dome was free-formed with a relatively high degree of curvature. A small change in the location of each anchor point translates to a large change in curvature between them. Each curve looks for the shortest path between each pair (without leaving the surface), but only has access to single curvature.

N-Saddle
Anticlastic: Saddle Geodesic Gridshell

Structurally speaking, things get much more interesting with anticlastic curvature. As previously stated, each member will behave differently based on their relative curvature and orientation in relation to the surface. Depending on their location on a gridshell, plank lines can act partly in compression and partly in tension.

On another note:

While geodesic curves make it far more practical to fabricate shells, they are not a strict requirement. Using non-geodesic curves just means more time, money, and effort must go into the fabrication of each component. Furthermore, there’s no reason why you can’t use alternate grid patterns. In fact, you could use any pattern under the sun – any motif your heart desires (even tessellated puppies.)

6 - Alternate Grid
Alternate Gridshell Patterns [Source: IL 10 – Institute for Lightweight Structures and Conceptual Design]

Here are just a few of the endless possible pattern. They all have their advantages and disadvantages in terms of fabrication, as well as structural potential.

Biosphere Environment Museum - Canada
Biosphere Environment Museum – Canada

Gridshells with large amounts of triangulation, such as Buckminster Fuller’s geodesic spheres, typically perform incredibly well structurally. These structure are also highly efficient to manufacture, as their geometry is extremely repetitive.  

Centre Pompidou-Metz - France
Centre Pompidou-Metz – France

Gridshells with highly irregular geometry are far more challenging to fabricate. In this case, each and every piece had to be custom made to shape; I imagine it must have costed a lot of money, and been a logistical nightmare. Although it is an exceptionally stunning piece of architecture (and a magnificent feat of engineering.)

8.3 – Gridshell Construction

In our case, building these shells is simply a matter of converting the geodesic curves into planks lines.

O - Saddle 2
Hyperbolic Paraboloid: Straight Line Sweep Variation With Rotating Plank Line Grid

The whole point of using them in the first place is so that we can make them out of straight material that don’t necessitate double curvature. This example is rotating so the shape is easier to understand. It’s grid is also rotating to demonstrate the ease at which you can play with the geometry.

Hyperbolic-Paraboloid-Plank-Lines
Hyperbolic Paraboloid: Flattened Plank Lines With Junctions

This is what you get by taking those plank lines and laying them flat. In this case both sets are the same because the shell happens to the identicall when flipped. Being able to use straight material means far less labour and waste, which translates to faster, and or cheaper, fabrication.

An especially crucial aspect of gridshells is the bracing. Without support in the form of tension ties, cable ties, ring beams, anchors etc., many of these shells can lay flat. This in and of itself is pretty interesting and does lends itself to unique construction challenges and opportunities. This isn’t always the case though, since sometimes it’s the geometry of the joints holding the shape together (like the geodesic spheres.) Sometimes the member are pre-bent (like Pompidou-Metz.) Although pre-bending the timber kinda strikes me as cheating thought.. As if it’s not a genuine, bona fide gridshell.

Toledo-gridshell-20-Construction-process
Toledo Gridshell 2.0. Construction Process [source: Timber gridshells – Numerical simulation, design and construction of a full scale structure]

This is one of the original build method, where the gridshell is assembled flat, lifted into shape, then locked into place.

9.0 Form Finding

Having studied the basics makes exploring increasingly elaborate geometry more intuitive. In principal, most of the shells we’ve looked are known to perform well structurally, but there are strategies we can use to focus specifically on performance optimization.

9.0 – Minimal Surfaces

These are surfaces that are locally area-minimizing – surfaces that have the smallest possible area for a defined boundary. They necessarily have zero mean curvature, i.e. the sum of the principal curvatures at each point is zero. Soap bubbles are a great example of this phenomenon.

hyperbolic paraboloid soap bubble
Hyperbolic Paraboloid Soap Bubble [Source: Serfio Musmeci’s “Froms With No Name” and “Anti-Polyhedrons”]
Soap film inherently forms shapes with the least amount of area needed to occupy space – that minimize the amount of material needed to create an enclosure. Surface tension has physical properties that naturally relax the surface’s curvature.

00---Minimal-Surface-Model
Kangaroo2 Physics: Surface Tension Simulation

We can simulate surface tension by using a network of curves derived from a given shape. Applying varies material properties to the mesh results in a shape that can behaves like stretchy fabric or soap. Reducing the rest length of each of these curves (while keeping the edges anchored) makes them pull on all of their neighbours, resulting in a locally minimal surface.

Here are a few more examples of minimal surfaces you can generate using different frames (although I’d like stress that the possibilities are extremely infinite.) The first and last iterations may or may not count, depending on which of the many definitions of minimal surfaces you use, since they deal with pressure. You can read about it in much greater detail here: https://tinyurl.com/ya4jfqb2

Eden_Project_geodesic_domes_panorama.jpg
The Eden Project – United Kingdom

Here we have one of the most popular examples of minimal surface geometry in architecture. The shapes of these domes were derived from a series of studies using clustered soap bubbles. The result is a series of enormous shells built with an impressively small amount of material.

Triply periodic minimal surfaces are also a pretty cool thing (surfaces that have a crystalline structure – that tessellate in three dimensions):

Another powerful method of form finding has been to let gravity dictate the shapes of structures. In physics and geometry, catenary (derived from the Latin word for chain) curves are found by letting a chain, rope or cable, that has been anchored at both end, hang under its own weight. They look similar to parabolic curves, but perform differently.

00---Haning-Model
Kangaroo2 Physics: Catenary Model Simulation

A net shown here in magenta has been anchored by the corners, then draped under simulated gravity. This creates a network of hanging curves that, when converted into a surface, and mirrored, ultimately forms a catenary shell. This geometry can be used to generate a gridshell that performs exceptionally well under compression, as long as the edges are reinforced and the corners are braced.

While I would be remiss to not mention Antoni Gaudí on the subject of catenary structure, his work doesn’t particularly fall under the category of gridshells. Instead I will proceed to gawk over some of the stunning work by Frei Otto.

Of course his work explored a great deal more than just catenary structures, but he is revered for his beautiful work on gridshells. He, along with the Institute for Lightweight Structures, have truly been pioneers on the front of theoretical structural engineering.

9.3 – Biomimicry in Architecture

There are a few different terms that refer to this practice, including biomimetics, bionomics or bionics. In principle they are all more or less the same thing; the practical application of discoveries derived from the study of the natural world (i.e. anything that was not caused or made my humans.) In a way, this is the fundamental essence of the scientific method: to learn by observation.
Biomimicry-Bird-Plane
Example of Biomimicry

Frei Otto is a fine example of ecological literacy at its finest. A profound curiosity of the natural world greatly informed his understanding of structural technology. This was all nourished by countless inquisitive and playful investigations into the realm of physics and biology. He even wrote a series of books on the way that the morphology of bird skulls and spiderwebs could be applied to architecture called Biology and Building. His ‘IL‘ series also highlights a deep admiration of the natural world.

Of course he’s the not the only architect renown their fascination of the universe and its secrets; Buckminster Fuller and Antoni Gaudí were also strong proponents of biomimicry, although they probably didn’t use the term (nor is the term important.)

Gaudí’s studies of nature translated into his use of ruled geometrical forms such as hyperbolic paraboloids, hyperboloids, helicoids etc. He suggested that there is no better structure than the trunk of a tree, or a human skeleton. Forms in biology tend to be both exceedingly practical and exceptionally beautiful, and Gaudí spent much of his life discovering how to adapt the language of nature to the structural forms of architecture.

Fractals were also an undisputed recurring theme in his work. This is especially apparent in his most renown piece of work, the Sagrada Familia. The varying complexity of geometry, as well as the particular richness of detail, at different scales is a property uniquely shared with fractal nature.

Antoni Gaudí and his legacy are unquestionably one of a kind, but I don’t think this is a coincidence. I believe the reality is that it is exceptionally difficult to peruse biomimicry, and especially fractal geometry, in a meaningful way in relation to architecture. For this reason there is an abundance of superficial appropriation of organic, and mathematical, structures without a fundamental understanding of their function. At its very worst, an architect’s approach comes down to: ‘I’ll say I got the structure from an animal. Everyone will buy one because of the romance of it.”

That being said, modern day engineers and architects continue to push this envelope, granted with varying levels of success. Although I believe that there is a certain level of inevitability when it comes to how architecture is influenced by natural forms. It has been said that, the more efficient structures and systems become, the more they resemble ones found in nature.

Euclid, the father of geometry, believed that nature itself was the physical manifestation of mathematical law. While this may seems like quite a striking statement, what is significant about it is the relationship between mathematics and the natural world. I like to think that this statement speaks less about the nature of the world and more about the nature of mathematics – that math is our way of expressing how the universe operates, or at least our attempt to do so. After all, Carl Sagan famously suggested that, in the event of extra terrestrial contact, we might use various universal principles and facts of mathematics and science to communicate.

The Wishing Well

something caught in between dimensions – on its way to becoming more.

Summary

The Wishing Well is the physical manifestation, a snap-shot, of a creature caught in between dimensions – frozen in time. It is a digital entity that has been extracted from its home in the fractured planes of the mathematical realm; a differentially grown curve in bloom, organically filling space in the material world.

The notion of geometry in between dimensions is explored in a previous post: Shapes, Fractals, Time & the Dimensions they Belong to

 

Description

The piece will be built from the bottom-up. Starting with the profile of a differentially grown curve (a squiggly line), an initial layer will be set in pieces of 2 x 4 inch wooden studs (38 x 89 millimeter profile) laid flat, and anchored to the ground. Each subsequent layer will be built upon and fixed to the last, where each new layer is a slightly smoother version than the last. 210 layers will be used to reach a height of 26 feet (8 meters). The horizontal spaces in between each of the pieces will automatically generate hand and foot holes, making the structure easily climbable. The footprint of the build will be bound to a space 32 x 32 feet.

The design may utilize two layers, inner and out, that meet at the top to increase the structural integrity for the whole build. It will be lit from within, either from the ground with spotlights or with LED strip lights following patterns along the walls.

Different Recursive Steps of a Dragon Curve

Ambition

At the Wishing Well, visitors embark on a small journey, exploring the uniquely complex geometry of the structure before them. As they approach the foot of the well, it will stand towering above them, undulating organically across the landscape. The nature of the structure’s curves beckons visitors to explore the piece’s every nook and cranny. Moreover, its stature grants a certain degree of shelter to any traveller seeking refuge from the Playa’s extreme weather conditions. The well’s shape and scale allows natural, and artificial, light to interact in curious ways with the structure throughout the day and night. The horizontal gaps between every ‘brick’ in the wall allows light to filter through each layer, which in turn casts intriguing shadows across the desert. This perforation also allows Burners to easily, and relatively safely, scale the face of the build. Visitors will have the opportunity to grant a wish by writing it down on a tag and fixing it to the well’s interior.

171108 - Burning Man Timber Brick Laying Proposal View 2.jpg

 

Philosophy

If you had one magical (paradox free) wish, to do anything you like, what would it be?

Anything can be wished for at the Wishing Well, but a wish will not come true if it is deemed too greedy. Visitors must write their wish down on a tag and fix it to the inside of the well. They must choose wisely, as they are only allowed one. Additionally, they may choose to leave a single, precious, offering. However, if the offering does not burn, it will not be accepted. Visitors will also find that they must tread lightly on other people’s wishes and offerings.

The color of the tag and offering are important as they are associated with different meanings:

  • ► PINK – love
  • ► RED – happiness, joy, success, good luck, passion, vitality, celebration
  • ► ORANGE – change, adaptability, spontaneity, concentration
  • ► YELLOW – nourishment, warmth, clarity, empathy, being free from worldly cares
  • ► GREEN – growth, balance, healing, self-assurance, benevolence, patience
  • ► BLUE – conservation, healing, relaxation, exploration, trust, calmness
  • ► PURPLE – spiritual awareness, physical and mental healing
  • ► BLACK – profoundness,  stability, knowledge, trust, adaptability, spontaneity,
  • ► WHITE – mourning, righteousness, purity, confidence, intuition, spirits, courage

The Wishing Well is a physical manifestation of the wishes it holds. They are something caught in between – on their way to becoming more. I wish for guests to reflect on where they’ve been, where they are, where they are going, and where they wish to go.

171108 - Burning Man Timber Brick Laying Proposal View 1.jpg

From Fractals to Senses

Think back to when you were younger – how many times were you exposed to technology in a day? Whether it was a phone, a computer or watching TV. The world has had a dramatic advancement in technology and the questions that should be asked are, “are we as humans becoming more robotic? Running day-to-day tasks repeatedly?” My aim with the project below and the help of Burning man is to try to make us human again by reflecting on the 5 senses. Part of my childhood in Kenya was filled with no technology at times especially because it was a third world country. Weather I spent an hour climbing trees or just playing several different sports – no technology was involved. From a more personal experience babies/ kids at the age of 1 are already watching TV and playing games on phones. Where were we 30 or 100 years ago and where are we now? Who are you? What is your identity? When was the last time you experienced something that moved you spiritually/ emotionally? The journey through a temple or certain spaces can personally move me at times. If it’s just experiencing the space or listening to religious hymns – having a connection with something greater than yourself can not be described but just needs to be experienced.

Manveer Sembi's  Aexion Fractal imported from Mandelbulb3D to Rhino and 3D Printed
Manveer Sembi’s Aexion Fractal imported from Mandelbulb3D to Rhino and 3D Printed

Art installation name: To Make One Human Again

Project Description
Fractal geometry has always existed but was very recently discovered. The chosen design is based a fractal (as shown above) and the research of temples. At this stage in time everyone around has become very dependent on computers and technology as days go on – systematically – wake up, go to work, have lunch, work again, come home, sleep, repeat. It appears we have become robots running day to day tasks.

Physical Description
The structure is to have several entrances with a variety of different spaces – each space can be used in different ways. The proposed idea is to focus on most of the senses and finally introduce the user/ occupant to an area which can be used as he or she prefers. People who visit the installation will have a range of different background and want to reflect in different ways. The idea of interfaith participation with the installation will be a focus and even if one is an atheist, they should still be able to reflect with the installation. Experiencing the senses in the art piece/ sculpture shall take away the user from their day to day working/ life and try to make them experience a change in conditions which would make them feel “Human” .

Interactivity and mission
The proposal uses the 5 senses, so in order to enter into the main space, the user will need to experience one of the 5 senses. The space in the middle/ communal space can be used for multiple purposes (as burners see fit).
This is a preliminary installation for myself. The project is still at its concept stage and through experimentation and learning a working design can easily be constructed. The assembly process may need more than a one person (burner/ volunteers can help).
Although the burners may use this installation in different ways, possibly climbing it – the final product should be partially combustible, and any material left can be re-used by recycling.
The sensory installation will allow people to reflect with their inner self. Some memories are brought back with certain smells etc. For the installation to work, all the spaces must be kept clean at all times and each person’s privacy respected.

Philosophy of the piece
Focusing on fractal geometries at university – I was drawn to looking at Sikh and Hindu temples. Some of these temples use fractals in their construction. I have studied and worked in the UK but was born and brought up in Kenya. I have come across a range of different people with backgrounds which vary dramatically. The first world counties highly depend on technology and even now certain third world countries value technology over day to day necessities such as food. The idea of using the senses allows technology to be minimised in the installation and for one to be made human again. This is one of my major motivations, however, the objective of the installation at burning man is to experiment with the scalability of materials, construction techniques and to provide a sensory experience.

The proposal of using the 5 senses.
Sight – Certain LED lights can be added to the structure – so that it is visible at night.
Smell – Scent infused timber can be used so during the burn, these can be released or as people occupy the space the timber can have a smell to it.
Touch – Some of the timber can be engraved/ have different textures
Taste – The users can sit in the space to have their snacks/ meals
Hear – Chimes or other instruments which harness the wind can be hung in this area.

Burning Man render 2a

 

Fractals vs Digital Fabrication

Since the last post on the 23rd October our students have been exploring how to materialise their research into fractals (which they generated with Mandelbulb3D). The conflict between endless geometry and finite material world creates a creative tension that pushes innovation in digital design and fabrication. From parametric equations to parametric design, students have explored fractals as self-generating computer images and attempted to control them, first through changing their variables and then by extracting the most appealing fragments and recreating them using Grasshopper3D . From pure voxel-based images to NURBS or meshes and to 3D printing, laser-cutting, thermo-forming, casting..etc… students are confronted to the limitation of the computer’s memory and processing power as well as materials and numerical control (NC) programming language such as Gcode.

Navigating through fractals, exploring their recursive unpredictability to create more finite prototypes is like walking through the forest and noticing a beautiful flower to design your next building – it helps to let go of a fully top-down approach to architecture, it encourages a collaborations with your computer and a deep understanding of machines and materials. It anticipates a world in which the computers will have an intelligence of their own, where the architect will guide it onto a learning path instead of giving him instructions.  Using infinite fractals to inspire designs helps instill infinity within the finite world – bringing a spiritual dimension to our everyday life. 

Below is a selection of our students Brief01 journey so far:

Manveer Sembi's  Aexion Fractal imported from Mandelbulb3D to Rhino and 3D Printed
Manveer Sembi’s Aexion Fractal imported from Mandelbulb3D to Rhino and 3D Printed
Alexandra Goulds' MIXPINSKI4EX fractal
Alexandra Goulds’ MIXPINSKI4EX fractal
Michael Armfield's parametric exploration of the Amazing Surf Fractal
Michael Armfield’s parametric exploration of the Amazing Surf Fractal
20171102_184258.jpg
Michael Armfield’s parametric exploration of the Amazing Surf Fractal
Michael Armfield's parametric exploration of the Amazing Surf Fractal
Michael Armfield’s parametric exploration of the Amazing Surf Fractal
Henry McNeil's Fibreglass modelling of the Apollonian Gasket.
Henry McNeil’s Fibreglass modelling of the Apollonian Gasket.
Henry McNeil's 3D printed support for his fractal
Henry McNeil’s 3D printed support for his fractal
Henry McNeil's 3D printed fractal imported from Mandelbulb3d to Rhino
Henry McNeil’s 3D printed fractal imported from Mandelbulb3d to Rhino
Henry McNeil's Fibreglass prototype from Ping-Pong and tennis balls
Henry McNeil’s Fibreglass Fractal prototype from Ping-Pong and tennis balls
Ed Mack's laser-cut Fractal Dodecahedron.
Ed Mack’s laser-cut Fractal Dodecahedron.

 

Ben Street's auxetic double curved paper models
Ben Street’s auxetic double curved paper models
Ben Street's single curved paper models
Ben Street’s single curved paper models
Lewis Toghill's composite shells with Jesmonite, plaster, wax and fibre glass
Lewis Toghill’s composite shells with Jesmonite, plaster, wax and fibre glass

20171109_114548Alexandra Goulds' flexible timber node

Alexandra Goulds' flexible timber node
Alexandra Goulds’ flexible timber node
Manveer Sembi's paper cutting for double curved paper sphere
Manveer Sembi’s paper cutting for double curved paper sphere
James Marr's single curved wood node with rotational geometry for subdivided mesh geometry
James Marr’s single curved wood node with rotational geometry for subdivided mesh geometry
Nick Leung's 3D prints of the different recursive steps of a space-filling curve
Nick Leung’s 3D prints of the different recursive steps of a space-filling curve

 

Rebecca Cooper's Fractal truss study on parametric structural analysis tool Karamba3D
Rebecca Cooper’s Fractal truss study on parametric structural analysis tool Karamba3D
Manon Vajou's burnt polypropelene studies
Manon Vajou’s burnt polypropelene studies

20171026_154920

Three-Dimensional Mid-Air Acoustic Manipulation

Lying somewhere between science and art, University of Tokyo scientists Yoichi Ochiai,  Takayuki Hoshi and Jun Rekimoto use precision acoustics to bring the beauty of sound waves to life in three dimensions.

More information here from the University of Tokyo, Nagoya Institute of Technology

Polystyrene beads self organising in mid air

Final Crit – Thursday 16th May

It was DS10’s Final crit yesterday which concludes our BRIEF03:TEMPLE. Wonderful day with a wide spectrum of temples showing the concerns and fascinations of a group of twenty-one architectural students in 2013. A myriad of political and spiritual statements on today’s society helped by parametric design tools and physical modelling. Here is the list of all the themes that emerged in the third term:

  • Temple to Love and Lust in Brighton, U.K. – by Georgia-Rose Collard-Watson
  • Temple to Revolution in Tahrir Square, Egypt – by Luka Kreze
  • Temple to Making in the City of London, U.K. – by Michael Clarke
  • Temple to Vibrations on Mount Neru, Tanzania – by Dhiren Pattel
  • Temple to Crowdfunding the City of London, U.K. – by Sarah Shuttleworth
  • Temple to Infinity in the Mojave Desert, U.S.A – by Andrei Jippa
  • Temple to Augmented Reality near Oxford Street, London, U.K. – by Mark Simpson
  • Temple to Gin, near Kings Cross, London, U.K. – by George Guest
  • Temple to Permaculture, in Totness, U.K. – by Philp Hurrel
  • Temple to Bees, in the Olympic Park, London, U.K. – by Jake Alsop
  • Temple against Electro-Magnetic Radiations, in Snowdonia National Park, U.K. – by Chris Ingram
  • Temple against Pre-Packaged Meat, in Smithfield Market, London, U.K. – by Alex Woolgar
  • Temple to Bio-Polymers , in Thelford, U.K. – by Marilu Valente
  • Temple against Consumerism, in Selfridges, London, U.K. – by Jessica Beagleman
  • Temple to Online Knowledge, in the Sillicon Roundabour, London, U.K. – by Tim Clare
  • Temple to the Awareness of Death, in Mexico – by Thanasis Korras
  • Temple of Illusion, in South Bank, London, U.K.- by Daniel Dodds
  • Temple to Water on the Thames, London, U.K. – by William Garforth-Bless
  • Temple to Atheism in Lower Lea Valley Park, London, U.K. – by Emma Whitehead
  • Temple to Light in Elephant and Castle, London, U.K. – by Josh Haywood
  • Temple to Sun Worship in the Wyndham Council Estate, Camberwell London, U.K. – by Natasha Coutts

Thank you very much to all our external critiques: William Firebrace, Jeanne Sillett, Harri Lewis and Jack Munro.  Two weeks more to go until the hand-in of portfolios (28th May). Here are couple pictures:

Luka Kreze's thorned tensegrity architecture against dictatorship on Tahrir Square and a manual for revolution.
Luka Kreze’s thorned tensegrity architecture against dictatorship on Tahrir Square – A manual to start a revolution.
Jake Alsop's wax-generated temple for Bees
Jake Alsop’s wax-generated temple for Bees
Chris Ingram's Slate Community, away from electro-magnetic radiation
Chris Ingram’s Slate Community, away from electro-magnetic radiation
Marilu Valente's Digital/Physical experiement on elastic bio-polymer
Marilu Valente’s Digital/Physical experiement on elastic bio-polymer
Marilu Valente's diagramming of the  bio-polymer stretch
Marilu Valente’s diagramming of the bio-polymer stretch
Emma's  'Agora' - temple agora / forum for Sunday assembly -atheist congregation and for tech startup groups /music network Sofar sounds
Emma’s ‘Agora’ – forum for Sunday assembly – atheist congregation
Sarah Shuttleworth's Temple to crowdfunding - Kickstarter HQ
Sarah Shuttleworth’s Temple to crowdfunding – Kickstarter HQ
Crowdfunded structure for Sarah Shuttleworth's roof
Crowdfunded structure for Sarah Shuttleworth’s roof
Jessica Beagleman's "Atelier" on the roof of Selfridges is made of sewed pieces of plywood/
Jessica Beagleman’s “Atelier” on the roof of Selfridges is made of sewed pieces of plywood/
William Garforth-Bless'Temple to Water using a thin fiber glass shell and floating components on the Thames
William Garforth-Bless’Temple to Water using a thin fiber glass shell and floating components on the Thames
Philip Hurrell's Temple to the Transition Movement in Totness, Devon
Philip Hurrell’s Temple to the Transition Movement in Totness, Devon
Daniel Dodds' abstract for the Temple of Illustion
Daniel Dodds’ abstract for the Temple of Illustion
Tim Clare's temple to online knowledge is an irregular gridshell following learning spaces
Tim Clare’s temple to online knowledge is an irregular gridshell following learning spaces
The story of a reciprocal structure and a temple to making by Michael Clarke
The story of a reciprocal structure and a temple to making by Michael Clarke

Biohacking

We have personal computing, why not personal biotech? That’s the question biologist Ellen Jorgensen and her colleagues asked themselves before opening Genspace, a nonprofit DIYbio lab in Brooklyn devoted to citizen science, where amateurs can go and tinker with biotechnology. Genspace offers a long list of fun, creative and practical uses for DIYbio.