As part of international woman’s day I’m exploring differences between males and females in relation to the built environment in order to inform my final project. It only takes two minutes to complete and will directly influence the design progression.
Reflection presents this years burners with an intimate setting in which to share their inner most confessions, secrets and tales – With the option to do so both openly with other burners face to face, or retain the mystery of their identity by sharing with a complete stranger through the pavilions semi private screen. Reflection embodies the theme ‘Carnival of Mirrors’ in a variety of manners:- the geometry of the pavilion not only mirrors itself in its own form, but also incorporates a reflective surface within its interior spaces. The reflective physicality of the pavilion beautifully juxtaposes its function, by giving its burners a physical platform with which to cogitate their innermost thoughts and feelings, and share these with others. The pavilion is created as a result of rigorous testing of origami in order to create a single Spiralhedron which is then mirrored through along all axis.
Based upon a geometric origami principle which outlines the rules for the triangular subdivision of a 2-dimensional shape and assigns mountain and valleys creases to each subsequent subdivision the Spiralhedron has been optimised through both digital and physical testing. Reflection takes an abstract approach to this years theme, the pavilion’s form manifests itself as a result of mirroring this singular Spiralhedron in the X,Y and Z axis, which in turn creates its enclosing plywood form. In order to create the semi-private confessional screen, the panels incorporate a pattern, providing both the function of privacy, but also narrating the origins of the pavilions final form.
Due to form being created through the act of mirroring the entire pavilion will be made of 9 unique laser cut panels which will be bolted together with both metal hinges and 90 degrees and wooden brackets at 135 degrees.
Dimensions
Constrained by the size of a plywood sheet each individual Spiralhedron is made of two sheets of plywood (requiring 16 in total). Made of eight spiralhedrons ‘Reflection’ has a footprint of 3.5metres*3.5metres with a maximum height of 3.5m creating a footprint equal to that of the height of the pavilion.
First developed in 1979 by Dániel Erdély the Spidron is created by recursively dividing a 2-dimensional hexagon into triangles, forming a pattern that consists of one equilateral followed by one isosceles triangle. The resulting form is of six Spidron legs that, when folded along their edges, deform to create a 3-dimensional Spidron.
Initial investigations into the Spidron system using paper resulted in irregular shapes that could not be predicted, and therefore replicated precisely. Progressing onto using rigid materials allowed the system to be broken down into six components, removing unnecessary triangulated fold lines, and developing latch folded Spidron that is precisely the same as that formed parametrically.
This relationship between parametric and physical tests of component based Spidrons in both regular and irregular hexagons, as well as various other equal-sided shapes, has enabled the development of large scale models concluding thus far in a 1:2 scale version being built which will continue to be developed as a pavilion for submission to the Burning Man festival.
In parallel there has been an investigation into the system at a smaller scale allowing for the Spidron nest to be made as one component. In order to achieve the 3-dimensional Spidron form lattice hinges, also known as kerf folds, have been employed. Rigorous testing into the best cutting pattern have resulted in a straight line cutting pattern that allows for bending on multiple axis at once.
Developing this smaller scale system for submission to Buro Happold the intention is to create an arrayed system that is a conglomeration of both regular and irregular spidrons with varying depths and apertures that are able to integrate various display models etc. within.
So easily can fun and playfulness be neglected within Architecture. My proposal stands as an embodiment of these aspects, creating an area of inclusive participation, a space that can be explored and is only complete when occupied.
Fallen from the sky and tied down in the middle of Black Rock City ‘The Cloud’ stands as a mirage for weary-eyed travellers from far and wide, a beacon of sanctuary that creates spaces that provide respite from the harsh conditions of the desert using permeable fabric to create a cool atmosphere diffusing light within daylight and emitting a soft glow from within in the evening.
Principle Stress Analysis
Walking through the dessert after a long journey along the silk road ‘The Cloud’ emerges as a whimsical mirage. Mimicking the form of a cloud the easily recognisable form is transformed into Architecture; a sinuous billowing form allowing us to fulfil a childhood dream, walking on clouds.
The principle structure of the cloud is composed of hollow rolled steel tubes ,sandwiched between thick perforated fabric, strategically placed to withstand the extreme wind conditions as well as human interaction. Elevated from the floor these tubes are secured to the ground using the kandy kane re-bar method.
Keeping the form soft and playful so that not only is the installation safe but also malleable, responding to people climbing and walking it, bungee rope is securely looped over the steel tubes and threaded through the ‘ground’ fabric to hold it up, as illustrated in the accompanying drawing.
Interactivity is an integral part of the installation. Bringing to life the stranded cloud people are encouraged to explore the piece climbing in, over and around it, finding intricate crevasses that provide discreet hidden entrances to the inner cloud where an intimate social environment softly illuminated by the diffused daylight, providing an area of solace.
Karamba is a parametric environment added onto Grasshoper for 3D modelling in Rhinoceros . It provides an accurate analysis of systems parametrically modelled and enables designers to analyse projects from the earliest stages of a project.
In both 32 and 64 bit applications the installation must be installed within the same file where the Grasshopper.dll file resides. Karamba can run without installing a Pro/Student licence however without it there are limitations to the geometry that can be analysed and the about of mesh faces it can take (>50)
The Student license has the same capabilities as the Pro licence and is only 30EUR for two installations. In order toobtain a licence after installing Karamba use the licence tool to save the ‘machine ID’ which then needs to emailed along with your student ID to: info@karamba3d.com