Archive

Tag Archives: Grasshopper

Hello WeWantToLearn community. We’re going to Burning Man in less than a month!

Our project this year will be a physical manifestation of our collective dreams and is called Tangential Dreams.  It is a seven meters high temporary timber tower displaying inspiring messages from around the world, written on a multitude of swirling “tangents”.

We need your help to realise our project! There is only three days left to collect the missing £5,000 on our crowdfunding campaign to finance the many expenses associated with the creation of such an ambitious project.

Please click on the image below or use the following shortlink to share/help – everything helps: http://kck.st/28KlbPk🙂

 

Kickstarter-support-590x144

 

MamouMani_TangentialDreams (15)

The project is a climbable sinuous tower made from off-the-shelf timber and digitally designed via algorithmic rules. One thousand “tangent” and light wooden pieces, stenciled with inspiring sentences, are strongly held in position by a helicoid sub-structure rotating along a central spine which also forms a safe staircase to climb on. Each one of the poetic branches faces a different angle, based on the tangent vectors of a sweeping sine curve. In line with this year’s theme, the piece is reminiscent of Leonardo’s Vitruvian man’s movement, helicoid inventions such as the “aerial screw” helicopter and Chambord castle helicoid staircase as well as his deep, systematic, understanding of the rules behind form to create art. From a wave to a flame all the way to a giant desert cactus, the complex simplicity of the art piece will trigger many interpretations, many dreams.

The art piece attempts to maximize an inexpensive material by using the output of an algorithm – (the value of the piece being the mathematics behind it, as well as the experience, not the materials being used). The computer outputs information to locate the column, sub-structure and tangents.  We believe digital tools in design are giving rise to a new Renaissance, in which highly sophisticated designs, mimicking natural processes by integrating structural and environmental feedback, can be achieved at a very low cost. We worked very closely with our structural engineer format, sharing our algorithms, to give structural integrity to the piece and resist the strong climbing and wind loads. There are now three “legs” to our proposal, each rotated from each other at 60 degrees angles around a central solid spine, to ensure the stability of the piece, similarly to a tripod. The tangents are not just a decoration, they act as a spiky balustrade to prevent people from falling.

We have a fantastic team for the project:  Philip Olivier, Eira Mooney, Maialen Calleja, Aaron Porterfield, Sebastian Morales, Antony Dobrzensky, Laura Nica, Karina Pitis, Hamish Macpherson, Jon Goodbun, Yannick Yamanga, Matthew Springer ,Josh NG ,Lola Chaine, Dror BenHay, Peter Wang, Charlotte Chambers, Michael DiCarlo, Sandy Kwan.

 

We want our structure to have an intangible aspect, a magical side, one that is beyond matter and geometry. We want to connect our art with every each of you and make you part of our own BIG DREAM, building Tangential Dreams.

We want our structure to have an intangible aspect, a magical side, one that is beyond matter and geometry. We want to connect our art with every each of you and make you part of our own BIG DREAM, building Tangential Dreams.

 

We use physical modelling as a way to understand how the pieces fit together, the best assembly sequence as well as the structural integrity of the project. It takes time, material, money to create a truly original project.

We use physical modelling as a way to understand how the pieces fit together, the best assembly sequence as well as the structural integrity of the project. It takes time, material, money to create a truly original project.

 

Gif Animation of the assembly process. the project will take two weeks to pre-cut and assemble together with volunteers. We need your help for all the expenses.

Gif Animation of the assembly process. the project will take two weeks to pre-cut and assemble together with volunteers. We need your help for all the expenses.

 

 

Exciting rewards to thank you for your supports! from top left to bottom right: Pendants, Earrings, T-Shirts, Tangents, Vase, Ceiling Panels, 3D Printed Smoke Stool, Full Physical Model.

Exciting rewards to thank you for your supports! from top left to bottom right: Pendants, Earrings, T-Shirts, Tangents, Vase, Ceiling Panels, 3D Printed Smoke Stool, Full Physical Model.

 

 

Screen Shot 2016-04-13 at 15.35.06

KICKSTARTER VIDEO & CAMPAIGN LINK: http://kck.st/1qGLHSw

PURSUIT is an interactive art installation that celebrates humanity’s ongoing quest for Peace, Freedom and Joy – in Life, Love and Art. The design aims to create an interactive and unique sculptural playground for visitors of the 2016 Burning Man Festival, which takes place from August 28th to September 5th in Black Rock Desert, Nevada.

THE PROJECT

from Trey Ratcliff at http://www.StuckInCustoms.com

PURSUIT emerges from the playa in tiers of intertwined timber elements that ascend seamlessly in unison to form a series of congregation and celebratory spaces. The final design is the result of a year-long study into the sensuous geometry generated from a mathematical theory known as Pursuit Curvature. This theory was explored as I wanted to utilise something that could fully embody the notion of people coming together from different places and striving towards a common goal. With Pursuit Curvature, each point starts at a unique position of a polygon, and moves incrementally towards the nearest adjacent point until they all converge in the centre. The path travelled is directly influenced by the points around it, so the final curves represent the effects all of the points have on one another as a group.

Frame 25 Ornate Central Space

Central Space

Burners can rest inside the ornate central space of Pursuit, which frames the ongoings of the playa and provides burners with a place of respite from the open sun. The six inhabitable pillars connect the playa directly to the platforms that lie atop Pursuit. Here, a glorious vantage point in which to congregate and take in the festival is gifted to Burners. During the day the interiors of the pillars are concealed from the elements, and their curved form helps to guides burners ascent to the open air. Here they can bathe in the wondrous light of either sunrise or sunset, a truly magical playa experience indeed.

Frame 125 Final Light Shot Night Time

At night time each pillar’s interior is powerfully lit to envelop the burners in light, so they can experience a sense of weightlessness and freedom. The soft glow emanating from each of the pillars’ cores invites burners to commune atop Pursuit to celebrate the radiant beauty of the night sky.

OUR PURSUIT

Frame 75 Inside

Interior of each Pillar

“As I look back on my life, I realise that every time I thought I was being rejected from something good, I was actually being re-directed to something better.” – Steve Maroboli. 

Pursuit is a gift to the Burning Man community. Every year, we apply for funding from the Black Rock City LLC (Burning Man) to help fund our projects. Unfortunately this year, nobody received funding towards their project. Despite initial disappointment, I realised that this helped elevate the project’s intent and concept to a new level than originally planned. By crowdfunding the entirety of the project, we can manifest the collective Pursuit of people from all over the world to see this project built. This is not only tremendously exciting, but also a very humbling prospect, in that we have a passion to give this gift to the playa, but we need your help to give that gift. It is through this collective pursuit that we can embody the spirit of the festival and the project in a built architectural form.

REWARDS

T-Shirt2.jpg

To show our gratitude for any of your generous pledges, I have created some truly beautiful and unique rewards for all levels of contribution – Each inspired by the projects form and concept, that are all exclusive to this campaign. Please do go and have a look for yourself at them and support the campaign. If you can’t spare a donation at this time, then please share the campaign to as many people as you can – so that together, we can make the project a reality.

Thank you

Joshua

KICKSTARTER LINK: http://kck.st/1qGLHSw

Final Day Render

INSTALLATION SUBMISSION TO BURNING MAN 2016 – ‘Entwine’

Entwine is a timber frame structure which has been developed through rigorous physical and digital testing to ensure a safe climbing frame for all to enjoy. When exploring Entwine, the vast expanse of the playa is framed through beautiful intertwining curved plywood beams. Burners can view the event from glorious vantage points nestled amidst multiple communal spaces that encourage interaction and play.

The structure predominantly consists of strips of curved plywood which have been connected together using pioneering construction techniques, specifically the utilisation of conflicting forces, similar to those apparent in ‘Tensegrital’ design. Drawing inspiration from Leonardo Da Vinci and his various experimentations with physical form, ‘Entwine’ is a marvel of geometry. The piece is formed from an arrangement of 19 octahedral components, each consisting of six beams, which are paired and positioned upon one of three axis. These three elements represent the unity of man, nature and the universe that surrounds us.

Close up Render.jpgFinal Close Up RenderFINAL Night Render

Each modular component is tessellated to form an octahedral space frame structure. The rigidity resulting from this tessellation is in direct contrast to the curving structural beams which exude an organic aesthetic. As Burners view Entwine from different aspects, a remarkable array of different patterns and forms are revealed, many bearing resemblance to sacred geometry, specifically the Flower of Life, which was a significant study within Leonardo Da Vinci’s work.

"DCIM100MEDIA"

Entwine is unorthodox in its composition, and this is a contributing factor to what makes it so unique: Each module is constructed through tensioning layers of ¼ inch thick plywood, which are then mechanically fixed together when a desired radius has been reached. By laminating the plywood in this manner, each component retains its curvature but remains in compression. These conflicting forces are integral to the design of Entwine: Each octahedral module is constructed from these compressed plywood elements, and are held together with tensioning ropes creating a structure of isolated components in compression within a net of continuous tension.MODEL PHOTOGRAPHSMODEL PHOTOGRAPHS 2The form of the structure is based on the octahedron, which is a Platonic solid composed of eight equilateral triangles; four of which meet at each vertex. One of the eight triangles acts as a base for the structure. This results in one edge creating a small cantilever, whilst the counter edge can be anchored to the ground. As previously studied by Buckminster Fuller, the geometry of an octahedron is particularly good at forming space frames with a strong cantilevers.

section.jpg

Entwine Construction Proposal

The participatory aspect of the installation voids the role of the ‘spectator’ and creates more active engagement. In many of Leonardo Da Vinci’s paintings, his subjects are framed by surreal, dreamlike landscapes. This is reflected within Entwine: As Burners become part of the installation, they are framed by the awe inspiring backdrop of Black Rock Desert: In many ways Entwine becomes the artist, the playa the canvas, and Burners the subjects.

“the artist is not a special sort of person, but every person is a special sort of artist.”

This is not only true in the sense of physical involvement but during the construction the ‘spectator’ becomes involved in making strategic decisions in the realisation of the work of art. The development, design and construction of the project embodies the principles of self-reliance and self-expression, whilst a proposal that is safe, interactive and beautiful will be gifted to the community at Burning Man.

Entwine’s curving form will be illuminated using LED spot lights to enhance the organic patterning existent within the structure. This allows the full form of the structure to be fully visible.

My initial studies stemmed from researching into Stellation. This, in simple terms, is the process of extending  polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions, to form a new figure. Through researching the application of this process, I came across the sculptures created by George Hart, as he has experimented with stellated geometries to which are subdivided to create mathematical interweaving structures.Stellation 1

My Research into the method and calculations of George Hart’s Mathematical Sculpture’s focused on the sculpture ‘Frabjous’. Through rigorous testing and model making I have understood the rules behind the complex form. This is based on the form of a stellated icosahedron, whose shape is contained within a dodecahedron.grey card model

Lines are drawn from one point, to a point mirrored at one edge of the face of the dodecahedron form – as shown in the diagram. This creates intersecting lines at each face as you can see from the diagrams below. Each dividing line has two intersection points, with symmetry at the center of the line. The sculpture aims to avoid the intersections of these lines by introducing a sine curve with the domain 0 to 2*pi. As you can see, each component is exactly the same – for this model, 30 components are used.

george hart diagram 1george hart diagram 2george hart diagram 3

`To simplify the construction of the sculpture, I extracted a build-able section which uses ten components in total. Two of these sections are then weaved together and joined up by a further ten single components to form the entire sculpture.Diagram Sequence of Researched SculptureOne Component ImageryGeometry 2

Following this research, I extracted the concept of avoiding the intersection and subdivided a cube with lines from each corner of the cube. These lines were then weaved around eachother using a sine curve with a domain of 0 to pi. I then mirrored the curves and rotated them to create an intertwining form.Avoiding Self Intersection 2

Another test was created with the same process, however subdividing a cube using the midpoint of each face. – This creates an octahedral geometry.Avoiding Self Intersection octahedron

Using this interweaving geometry, I have created different three dimensional arrays to create a spatial form. The concept of avoiding intersections naturally cause a structure to fail. To form a structurally efficient version of this geometry, I introduced the idea of a reciprocal structure, and allowed the beams to self support by resting on eachother. This did not create a structure strong enough to stand on, however through adding a cube whose dimensions are equal to the width of the beams, the structure became very strong.

Avoiding Self Intersection octahedron 3

Testing the component at a small scale required the design of a joint which allowed me to assemble these components together through interlocking elements. Each beam element slots into the joint; When two joints and two beams are connected together the curves naturally stay in place due to the angle cut into the joint. Three of these connected elements together form the component.

Diagraming the Joint

As mentioned previously, avoiding intersections create inefficient structures – For this small scale experimentation, the concept of Tensegrity was implemented. Tensegrity is a structural principle based on using isolated compression components within a net of continuous tension, allowing the compression members to not need to touch each other. This model was constructed using 1.5mm plywood which has been laser cut; the modularity of the system ensures minimal material wastage.

Construction Sequence of ModelModel Photographs

The three dimensional array of this geometry creates many interesting shapes and patterns when viewed from different angles – this is visible in the following video:

 

 

 

 

Geometry can be found on the smallest of scales, as is proven by the beautiful work of the butterfly in creating her eggs. The butterflies’ metamorphosis is a recognised story, but few know about the start of the journey. The egg from which the caterpillar emerges is in itself a magnificently beautiful object. The tiny eggs, barely visible to the naked eye, serve as home for the developing larva as well as their first meal.

White Royal [Pratapa deva relata] HuDie's Microphotography

White Royal [Pratapa deva relata] HuDie’s Microphotography

shapes copy

Clockwise: Hesperidae, Nymphalidae, Satyridae, Pieridae

Each kind of butterfly has its unique egg design, creating a myriad of beautiful variations.

These are some of the typical shapes that each family produce.

But it is the Lycaenidae family that have the most geometrical and intricate eggs.

lyc

Lycaenidae

Other eggs

Lycaenidae eggs from left to right: Acacia Blue [Surendra vivarna amisena], Aberrant Oakblue [Arhopala abseus], Miletus [Miletus biggsii], Malayan [Megisba malaya sikkima]. HuDie’s Microphotography

 1

Biomimetics, or biomimicry is an exciting concept that suggests that every field and industry has something to learn from the natural world. The story of evolution is full of problems that have been innovatively solved.

2

There are thousands of species of butterfly, each with their unique egg design. 3A truncated icosahedron for a frame, the opposite of a football. Instead of panels pushed out, they are pulled in.

4567

Fractals are commonly occurring in nature, and can be described as a never-ending pattern on different scales. People are subconsciously familiar with fractals, so are inherently more relaxed when surrounded by them.

891011121314151617181920212223242526

3D Printing is a relatively new technology that is set to change our world. Innovations in the uses of 3D printers, combined with falling costs, means that they could be a ubiquitous tool in every home and industry. 3D printers and scanners are already used a great deal in everything from the biomedical field to art studios, and experiments are currently being done to construct entire homes. This technology is in its infancy, and it is exactly for this reason that every effort should be taken to research its potential. It is common to use 3D printers in architecture to show small working models, I would like to now use it to make a large and complex structure at full scale.

27

This research will underpin the design of a sculptural installation in which people can interact with live butterflies. With the ever-declining numbers of butterflies worldwide and in the UK, conservation and education are paramount.

The link between butterflies and humans in our ecosystem is one that is vital and should be conserved and celebrated.

I can imagine an ethereal space filled with dappled light where people can come for contemplation and perhaps their own personal metamorphosis.

Interior

—Tia

The inspiration for this research came from the Asian artist Ren Ri, who uses bees in order to generate his sculptural  work. He predefines the space for the bees to work with, and allows for a time period for the honeycombs to take shape.Portfolio__Page_06Portfolio__Page_07Portfolio__Page_08Portfolio__Page_09

There are three types of surface division that manage to fill up all the area with prime geometric space – triangular (S3), square (S4) and hexagonal (S6). Other types of surface division, either leave gaps between the prime elements, which need to be filled by secondary shapes, or are confined to irregular shapes.
Research shows that the most efficient way of dividing a surface is through a minimum number of achievable line intersections, or a maximum number of membranes. In either case, the hexagonal division fits the case. This type of organization is a second degree iteration from the triangular division. It is formed by identifying and connecting the triangular cell centroids.
Such as in the case of soap-bubble theory, these cells expand, tending to fill up all the surface area around them, and finally joining through communicating membranes.
From a structural point of view, the best integration is the triangular one, because of the way each element (beam) reacts to the variation of the adjacent elements.
By converting the elemental intersection in the hexagonal division from a single triple intersection to a triple double intersection, the structure would gain sufficient structural resistance. This can be done through two methods – translation or rotation. Translation implies moving the elements away from the initial state in order to open up a triangular gap at the existing intersection. This method results in uneven shapes. In the case of rotation, the elements are adjusted around each middle point until a sufficient structural component is created. It is through rotation that the shape is maintained to a relative hexagonal aspect, due to the unique transformation method.

Portfolio__Page_10Portfolio__Page_11Portfolio__Page_12Portfolio__Page_13Portfolio__Page_14Portfolio__Page_15Portfolio__Page_16Portfolio__Page_17Portfolio__Page_24Portfolio__Page_25Portfolio__Page_30Portfolio__Page_31Portfolio__Page_32Portfolio__Page_33

Portfolio__Page_35

Pursuing the opportunity to test the system through a 1:1 scale project, I was offered the chance to design a bar installation for a private event at the Saatchi Gallery. The project has been a success and represents a stage test for the system.Portfolio__Page_36Portfolio__Page_37Portfolio__Page_38Portfolio__Page_39Portfolio__Page_40Portfolio__Page_41Portfolio__Page_42Portfolio__Page_43Portfolio__Page_44Portfolio__Page_45Portfolio__Page_47Portfolio__Page_49Portfolio__Page_46Portfolio__Page_48Portfolio__Page_50Portfolio__Page_51

Moving further, the attempt was to implement dynamic force analysis to the design, through variation of the elemental thickness. The first test was a bridge design. The structure was anchored on 2 sides, and had a span of 5m.  Portfolio__Page_54Portfolio__Page_55

The next testing phase includes domed structures, replicating modular structures and double curved instances.
Portfolio__Page_57Portfolio__Page_58Portfolio__Page_59Portfolio__Page_60Portfolio__Page_61Portfolio__Page_63Portfolio__Page_62Portfolio__Page_64Portfolio__Page_65Portfolio__Page_66Portfolio__Page_67

A quick update from Burning Man’s dusty “Playa” on which three Diploma Studio 10 students have built their academic projects together with a team of 60 volunteers from the University of Westminster and beyond. You can follow our Instagram account for more pictures of the journey and we will post more details and pictures on our return. Thank you so much for your support and hope that the projects will inspire you!

The Bismuth Bivouac Burning Man

The Bismuth Bivouac designed by fourth year student Jon Leung

 

The Infinity Tree designed by Tobias Power

The Infinity Tree designed by fourth year student Tobias Power

 

 

Reflection designed by fifth year graduate Lorna Jackson

Reflection designed by fifth year graduate Lorna Jackson