3 Days left to help us with the Tangential Dreams Crowdfunding Campaign

Hello WeWantToLearn community. We’re going to Burning Man in less than a month!

Our project this year will be a physical manifestation of our collective dreams and is called Tangential Dreams.  It is a seven meters high temporary timber tower displaying inspiring messages from around the world, written on a multitude of swirling “tangents”.

We need your help to realise our project! There is only three days left to collect the missing £5,000 on our crowdfunding campaign to finance the many expenses associated with the creation of such an ambitious project.

Please click on the image below or use the following shortlink to share/help – everything helps: http://kck.st/28KlbPk 🙂

 

Kickstarter-support-590x144

 

MamouMani_TangentialDreams (15)

The project is a climbable sinuous tower made from off-the-shelf timber and digitally designed via algorithmic rules. One thousand “tangent” and light wooden pieces, stenciled with inspiring sentences, are strongly held in position by a helicoid sub-structure rotating along a central spine which also forms a safe staircase to climb on. Each one of the poetic branches faces a different angle, based on the tangent vectors of a sweeping sine curve. In line with this year’s theme, the piece is reminiscent of Leonardo’s Vitruvian man’s movement, helicoid inventions such as the “aerial screw” helicopter and Chambord castle helicoid staircase as well as his deep, systematic, understanding of the rules behind form to create art. From a wave to a flame all the way to a giant desert cactus, the complex simplicity of the art piece will trigger many interpretations, many dreams.

The art piece attempts to maximize an inexpensive material by using the output of an algorithm – (the value of the piece being the mathematics behind it, as well as the experience, not the materials being used). The computer outputs information to locate the column, sub-structure and tangents.  We believe digital tools in design are giving rise to a new Renaissance, in which highly sophisticated designs, mimicking natural processes by integrating structural and environmental feedback, can be achieved at a very low cost. We worked very closely with our structural engineer format, sharing our algorithms, to give structural integrity to the piece and resist the strong climbing and wind loads. There are now three “legs” to our proposal, each rotated from each other at 60 degrees angles around a central solid spine, to ensure the stability of the piece, similarly to a tripod. The tangents are not just a decoration, they act as a spiky balustrade to prevent people from falling.

We have a fantastic team for the project:  Philip Olivier, Eira Mooney, Maialen Calleja, Aaron Porterfield, Sebastian Morales, Antony Dobrzensky, Laura Nica, Karina Pitis, Hamish Macpherson, Jon Goodbun, Yannick Yamanga, Matthew Springer ,Josh NG ,Lola Chaine, Dror BenHay, Peter Wang, Charlotte Chambers, Michael DiCarlo, Sandy Kwan.

 

We want our structure to have an intangible aspect, a magical side, one that is beyond matter and geometry. We want to connect our art with every each of you and make you part of our own BIG DREAM, building Tangential Dreams.
We want our structure to have an intangible aspect, a magical side, one that is beyond matter and geometry. We want to connect our art with every each of you and make you part of our own BIG DREAM, building Tangential Dreams.

 

We use physical modelling as a way to understand how the pieces fit together, the best assembly sequence as well as the structural integrity of the project. It takes time, material, money to create a truly original project.
We use physical modelling as a way to understand how the pieces fit together, the best assembly sequence as well as the structural integrity of the project. It takes time, material, money to create a truly original project.

 

Gif Animation of the assembly process. the project will take two weeks to pre-cut and assemble together with volunteers. We need your help for all the expenses.
Gif Animation of the assembly process. the project will take two weeks to pre-cut and assemble together with volunteers. We need your help for all the expenses.

 

 

Exciting rewards to thank you for your supports! from top left to bottom right: Pendants, Earrings, T-Shirts, Tangents, Vase, Ceiling Panels, 3D Printed Smoke Stool, Full Physical Model.
Exciting rewards to thank you for your supports! from top left to bottom right: Pendants, Earrings, T-Shirts, Tangents, Vase, Ceiling Panels, 3D Printed Smoke Stool, Full Physical Model.

 

 

Da Vinci Codex

‘Da Vinci Codex’ is a latticed sculptural piece which creates unique poetics of morphology that merge structure and movement. It transgresses the artificial boundary between art, science and technology, casting seemingly established analogies in a new light while inviting visitors to rethink the relationship between form, geometry and construction. Linear and curved scissor elements form a series of recursive cubes which speak of infinity and the complexity of our world. It denotes a recognizable metaphor of ‘object-within-similar-object’ that appears in the design of many other natural and crafted objects. The precision of the cubic form reflects the organised chaos of our universe. Poignant patterns inspired by a study into the scissor movement of the cube elements are perforated into the triangulated parts of the Codex.

Da Vinci Codex 1

Da Vinci Codex 2

As they expand and collapse, the triangles form unique and intricate shadows which highlight the transitional quality of human life and emotions, changing from a state of happiness to sadness, from calm to anger, from life to death. The structure provides shelter from the heat of the sun while entertaining its guests with opportunities to engage with the structure. A deployment mechanism inspired by study into Leonardo da Vinci’s machinery sketches found in his Codex Atlanticus is actuated by a series of gears situated at the base of the structure, which are set into motion by a pedal system powered by visitors. As burners interact with the piece, they contemplate a fascinating and spectacular change of light and decor. ‘Da Vinci Codex’ stands as a piece of event architecture, a spatial construct where movement is a transformational creative force.

The visitors interact with the piece by powering one of the four pedal systems connected to the deploying mechanism. As they pedal, the burners witness a captivating movement: the synchronised expanding and collapsing of the three cubes which cast intricate shadows and stimulate a sense of play. The visitors can also step inside the cubes and experience a series of ‘in-between’ spaces before reaching the central volume and enjoying a level of protection from the wind and sun. The highly abstract aesthetic of the ‘da Vinci Codex’ is meant to affect the community with a spirit of experimentation and encourage each and every burner to question preconceived ideas, beliefs or desires.

Da Vinci Codex

Da Vinci Codex3Da Vinci Codex2

The size of each member has been carefully considered not only to allow structural integrity but also to respect the proportions of the human body. Each face of the cube moves in a synchronised manner. The relationship between the size of each face and proportions of the human body has been inspired by da Vinci’s Vitruvian man.

BM open cubeBM night render

‘Entwine’ – Submission for Burning Man 2016

Final Day Render

INSTALLATION SUBMISSION TO BURNING MAN 2016 – ‘Entwine’

Entwine is a timber frame structure which has been developed through rigorous physical and digital testing to ensure a safe climbing frame for all to enjoy. When exploring Entwine, the vast expanse of the playa is framed through beautiful intertwining curved plywood beams. Burners can view the event from glorious vantage points nestled amidst multiple communal spaces that encourage interaction and play.

The structure predominantly consists of strips of curved plywood which have been connected together using pioneering construction techniques, specifically the utilisation of conflicting forces, similar to those apparent in ‘Tensegrital’ design. Drawing inspiration from Leonardo Da Vinci and his various experimentations with physical form, ‘Entwine’ is a marvel of geometry. The piece is formed from an arrangement of 19 octahedral components, each consisting of six beams, which are paired and positioned upon one of three axis. These three elements represent the unity of man, nature and the universe that surrounds us.

Close up Render.jpgFinal Close Up RenderFINAL Night Render

Each modular component is tessellated to form an octahedral space frame structure. The rigidity resulting from this tessellation is in direct contrast to the curving structural beams which exude an organic aesthetic. As Burners view Entwine from different aspects, a remarkable array of different patterns and forms are revealed, many bearing resemblance to sacred geometry, specifically the Flower of Life, which was a significant study within Leonardo Da Vinci’s work.

"DCIM100MEDIA"

Entwine is unorthodox in its composition, and this is a contributing factor to what makes it so unique: Each module is constructed through tensioning layers of ¼ inch thick plywood, which are then mechanically fixed together when a desired radius has been reached. By laminating the plywood in this manner, each component retains its curvature but remains in compression. These conflicting forces are integral to the design of Entwine: Each octahedral module is constructed from these compressed plywood elements, and are held together with tensioning ropes creating a structure of isolated components in compression within a net of continuous tension.MODEL PHOTOGRAPHSMODEL PHOTOGRAPHS 2The form of the structure is based on the octahedron, which is a Platonic solid composed of eight equilateral triangles; four of which meet at each vertex. One of the eight triangles acts as a base for the structure. This results in one edge creating a small cantilever, whilst the counter edge can be anchored to the ground. As previously studied by Buckminster Fuller, the geometry of an octahedron is particularly good at forming space frames with a strong cantilevers.

section.jpg

Entwine Construction Proposal

The participatory aspect of the installation voids the role of the ‘spectator’ and creates more active engagement. In many of Leonardo Da Vinci’s paintings, his subjects are framed by surreal, dreamlike landscapes. This is reflected within Entwine: As Burners become part of the installation, they are framed by the awe inspiring backdrop of Black Rock Desert: In many ways Entwine becomes the artist, the playa the canvas, and Burners the subjects.

“the artist is not a special sort of person, but every person is a special sort of artist.”

This is not only true in the sense of physical involvement but during the construction the ‘spectator’ becomes involved in making strategic decisions in the realisation of the work of art. The development, design and construction of the project embodies the principles of self-reliance and self-expression, whilst a proposal that is safe, interactive and beautiful will be gifted to the community at Burning Man.

Entwine’s curving form will be illuminated using LED spot lights to enhance the organic patterning existent within the structure. This allows the full form of the structure to be fully visible.

Bending Lattice System

My initial studies stemmed from researching into Stellation. This, in simple terms, is the process of extending  polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions, to form a new figure. Through researching the application of this process, I came across the sculptures created by George Hart, as he has experimented with stellated geometries to which are subdivided to create mathematical interweaving structures.Stellation 1

My Research into the method and calculations of George Hart’s Mathematical Sculpture’s focused on the sculpture ‘Frabjous’. Through rigorous testing and model making I have understood the rules behind the complex form. This is based on the form of a stellated icosahedron, whose shape is contained within a dodecahedron.grey card model

Lines are drawn from one point, to a point mirrored at one edge of the face of the dodecahedron form – as shown in the diagram. This creates intersecting lines at each face as you can see from the diagrams below. Each dividing line has two intersection points, with symmetry at the center of the line. The sculpture aims to avoid the intersections of these lines by introducing a sine curve with the domain 0 to 2*pi. As you can see, each component is exactly the same – for this model, 30 components are used.

george hart diagram 1george hart diagram 2george hart diagram 3

`To simplify the construction of the sculpture, I extracted a build-able section which uses ten components in total. Two of these sections are then weaved together and joined up by a further ten single components to form the entire sculpture.Diagram Sequence of Researched SculptureOne Component ImageryGeometry 2

Following this research, I extracted the concept of avoiding the intersection and subdivided a cube with lines from each corner of the cube. These lines were then weaved around eachother using a sine curve with a domain of 0 to pi. I then mirrored the curves and rotated them to create an intertwining form.Avoiding Self Intersection 2

Another test was created with the same process, however subdividing a cube using the midpoint of each face. – This creates an octahedral geometry.Avoiding Self Intersection octahedron

Using this interweaving geometry, I have created different three dimensional arrays to create a spatial form. The concept of avoiding intersections naturally cause a structure to fail. To form a structurally efficient version of this geometry, I introduced the idea of a reciprocal structure, and allowed the beams to self support by resting on eachother. This did not create a structure strong enough to stand on, however through adding a cube whose dimensions are equal to the width of the beams, the structure became very strong.

Avoiding Self Intersection octahedron 3

Testing the component at a small scale required the design of a joint which allowed me to assemble these components together through interlocking elements. Each beam element slots into the joint; When two joints and two beams are connected together the curves naturally stay in place due to the angle cut into the joint. Three of these connected elements together form the component.

Diagraming the Joint

As mentioned previously, avoiding intersections create inefficient structures – For this small scale experimentation, the concept of Tensegrity was implemented. Tensegrity is a structural principle based on using isolated compression components within a net of continuous tension, allowing the compression members to not need to touch each other. This model was constructed using 1.5mm plywood which has been laser cut; the modularity of the system ensures minimal material wastage.

Construction Sequence of ModelModel Photographs

The three dimensional array of this geometry creates many interesting shapes and patterns when viewed from different angles – this is visible in the following video:

 

 

 

 

Deployable structures

A deployable structure includes an enclosed mechanical linkage capable of transformation between expanded and collapsed configurations while maintaining its shape.

These types of structures have the advantage of creating versatile, modulated spaces, with easy and fast assembly which generate benefits such as adaptability, flexibility and space transformation.

Charles Hoberman pioneered a type of deployable structure based on curved scissor pairs as seen in his Hoberman sphere. The unfolding structure resembles an expanding geodesic sphere which can reach a size up to five times larger than the initial one. It consists of six loop assemblies (or great circles), each made of 60 elements which fold and unfold in a scissor-like motion. Portfolio 2.jpg

Hoberman Sphere by Charles Hoberman

A loop assembly is formed of at least three scissors-pairs, at least two of the pairs comprising two identical rigid angulated strut elements, each having a central and two terminal pivot points with centres which do not lie in a straight line, each strut being pivotally joined to the other of its pair by their central pivot points. The terminal pivot points of each of the scissors-pairs are pivotally joined to the terminal pivot points of the adjacent pair such that both scissors-pairs lie essentially in the same plane.Portfolio 22

Regular curved scissor-pairs in motion

When this loop is folded and unfolded certain critical angles are constant and unchanging. These unchanging angles allow for the overall geometry of structure to remain constant as it expands or collapses.Portfolio 23

Regular and irregular curved scissor-pairs in motion

The above diagrams show a closed loop-assembly of irregular scissors pairs where each scissors-pair is pivotally joined by its two pairs of terminal pivot points to the terminal pivot points of its two adjacent scissors-pairs. This loop-assembly is an approximation of a polygon in the sense that the distances between adjacent central pivot points are equal to the corresponding lengths of the sides of the polygon. Further, the angles between the lines joining adjacent central pivot points with other similarly formed lines in the assembly are equal to the corresponding angles in the polygon.

The beams forming scissor-pairs can be of almost any shape, providing that the three connection points form a triangle. The angle of the apex would dictate the number of scissor-pairs that can be linked together to form a closed loop.Portfolio 28.jpg

Scissor-pairs of varying morphologies

My physical experiments started with materials that would allow a degree of bending and torsion in order to test the limits of the system. Using polypropylene for the angular beams and metal screws for the joints, I created these playful models that bend as they expand and contract.Portfolio 214.jpg

Later I started using MDF for the beams as well as joints and noticed that a degree of bending was present in the expanded state of the larger circle.Portfolio 215.jpg

After using curved scissor pairs of the same angle to form closed linkages, I decided to combine two types of scissors and vary the proportion between the elements to achieve a loop which would offer the highest ratio between the expanded and contracted state.Portfolio 216.jpg

900 curved scissors loops

Portfolio 217.jpg

900 curved scissors with linear scissors loops

The above diagrams show a combination of 900 curved scissors with linear (1800) scissors to form rectangles that expand and contract. The length of the 900 beam was gradually increased  and by measuring the diagonals  of the most expanded and most contracted forms, I obtained the following ratios for the three rectangles:

R1 = 0.87

R2 = 0.67

R3 = 0.64

By keeping the curved scissor with the best ratio, I created three more rectangles, this time by varying the length of the linear beam. The following ratios were obtained:

R1 = 0.64

R2 = 0.59

R3 = 0.67Portfolio 218.jpg

900 curved scissors with linear scissors loops

I then took the linkage with the best ratio of 0.59 and rotated it 900 to form a cube which expands and contracts.Portfolio 219.jpgPortfolio 220.jpg

Combined linkage cubes

The change of state from open to closed is visually attractive and could have the potential of creating spaces that are transitional.Portfolio 223If more linear scissors are placed between the 900 scissors, a better contraction ratio is obtained.Portfolio 222

Combined linkage cubes with two linear scissors

Human Scale Origami Paraboloids

 

A hyperbolic paraboloid is an infinite surface in three dimensions with both hyperbolic and parabolic cross-sections. A playful and intuitive way of visualising and parameterising this concept can be achieved via the implementation of origami folding techniques.

The images below show how to create and tile a basic hyperbolic parabola with origami. Once fully formed, the result is flexible and malleable along its two axes.

This playfulness only increases as additional sides are added to the initial parametric shape. This, in turn directly correlates with the increase of the number of axes along which the paraboloid is able to form. For example, a hexagonal initial sheet with six sides, will also have six axes.

Octagonal and decagonal paraboloids are particularly enjoyable to create and play with.

When deconstructed, a decagonal paraboloid is comprised entirely of a series of ever diminishing, 72 degree trapezoids, that when tiled next to one another, come together to comprise individual components of one, larger trapezoid, or wedge. When tiled and secured along its long edge, a decagon is formed, and once folded, a hyperbolic paraboloid is possible.

It is through research and testing with digital fabrication how best to form and therefore scale this wedge component that a successful, parametric and human scale origami form might be accomplished.

The images below are further tests in a failed attempt at forming a larger, scalable hexagonal paraboloid. Previously, flexible material such as paper and polypropylene had been used to successfully form basic, octagonal and decagonal paraboloids. However, in this test, 4mm ply was used, and has proved to be most inflexible. Thusly, it is unable to bend universally along each of the six axes. Further testing is required.

 

19th October 2015 Tutorials

Hello Everyone – Back in our studio studying mathematical, biological and made-made systems using parametric tools and digital fabrication for our BRIEF01: EXPLORE. Here are couple highlights from yesterday’s tutorial showing the initial study models and drawings needed to explain the rules of the system and their creative possibilities.

Thin layered structures based on Japanese craft and the artist Shono Shounsai by Hamish Mac Pherson
Thin layered structures based on Japanese craft and the artist Shono Shounsai by Hamish Mac Pherson
Auxetic Structure from Paper by Alex Sommerville
Auxetic Structure from Paper by Alex Sommerville
The mathematics of moire patterns by Tom Jelley
The mathematics of moire patterns by Tom Jelley
Variations on Curves of Pursuit by Josh Potter
Variations on Curves of Pursuit by Josh Potter
Extending the faces of Isocahedron variations creating interlocking structures by Aslan Adnan
Extending the faces of Isocahedron variations creating interlocking structures by Aslan Adnan
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Variations on interlocking hexagons by Vlad Ignatescu
Truncated Polyhedron shaped from the planar corners by Agnieszka Tarnowska
Truncated Polyhedron shaped from the planar corners by Agnieszka Tarnowska