The man-made cocoon

A man-made cocoon woven from biodegradable rope material inspired by
the weaving of silkworms. It can be constructed in any softwood tree that
is strong enough and that has a convenient distribution of branches. The
tree is scanned and converted into a 3D model where a custom cocoon design
is created. The cocoon is both lightweight and strong as it is a tensile
structure (secondary structure) wrapping around a tree (primary structure).
It aims to bring people from the city closer to nature.

Trees & Humans

The following images will introduce my artefact into wider context. There are two possible scenarios, which could benefit from my artefact, one of which will be further developed in the upcoming term:
1) forest bathing as a way to for the human to reconnect with nature
2) rewilding as a way to both regenerate the land and human spirit

Photogrammetry

OBJECTIVE
The aim of photogrammetry was to create the most realistic three-dimensional representation of a tree, which could then be incorporated into computational experiments making the design process much more efficient.

LIMITATIONS
Photogrammetry generated about 60-70% of tree volume leaving out the detailed branches at the outer ends of the tree. 3D scanning would be a possible solution, however, unavailable at the moment.

Combining the Virtual and Real

REAL
3D-model of a real tree
VIRTUAL
wrapping/weaving around the 3D-model of a real tree virtually

Connecting points in space

OBJECTIVE
This section of my portfolio focuses on exploring the ways in which points can be connected with strings – in both two and three dimensions. The gained knowledge from this section informed my virtual weaving experiments (previous section)


LIMITATIONS:
When connecting regular geometries, it is much easier to find the differences between different connection techniques. The result looks also much more organised and neat. However, what I am aiming to do is apply these connection techniques to irregular geometries of trees, which is a big challenge.

Wrapping & weaving around real trees

This part tracks my learning of the weaving behaviour of silkworms. I have done my own weaving experiments, both physical and virtual to try and understand how weaved tensile structures work. Going forward, I would like to incorporate some of the observed physical principles into my design (into the Grasshopper script).

The Corn-Crete House System

The main aspects of the Corn-Crete House system are the use of space, material efficiency and relationship to site. The way space is shaped influences human behaviour. According to a research paper done by KAYVAN MADANI NEJAD in 2007 the curvilinearity of interior design directly affects the way people feel inside them. It concluded that the more curvilinear a space is the more comfortable, safe, relaxed and friendly it feels. My project builds upon this argument. Research also shows that the concrete industry is a major environment pollutant. Cement is the most damaging ingredient. I am proposing a new system which will be using less concrete & less cement thanks to: 1) corn residues partially replacing aggregate making the structure lighter and more porous 2) casting around inflatables resulting in curvilinear architecture suitable for compression which requires less tensile strength.