Fractals vs Digital Fabrication

Since the last post on the 23rd October our students have been exploring how to materialise their research into fractals (which they generated with Mandelbulb3D). The conflict between endless geometry and finite material world creates a creative tension that pushes innovation in digital design and fabrication. From parametric equations to parametric design, students have explored fractals as self-generating computer images and attempted to control them, first through changing their variables and then by extracting the most appealing fragments and recreating them using Grasshopper3D . From pure voxel-based images to NURBS or meshes and to 3D printing, laser-cutting, thermo-forming, casting..etc… students are confronted to the limitation of the computer’s memory and processing power as well as materials and numerical control (NC) programming language such as Gcode.

Navigating through fractals, exploring their recursive unpredictability to create more finite prototypes is like walking through the forest and noticing a beautiful flower to design your next building – it helps to let go of a fully top-down approach to architecture, it encourages a collaborations with your computer and a deep understanding of machines and materials. It anticipates a world in which the computers will have an intelligence of their own, where the architect will guide it onto a learning path instead of giving him instructions.  Using infinite fractals to inspire designs helps instill infinity within the finite world – bringing a spiritual dimension to our everyday life. 

Below is a selection of our students Brief01 journey so far:

Manveer Sembi's  Aexion Fractal imported from Mandelbulb3D to Rhino and 3D Printed
Manveer Sembi’s Aexion Fractal imported from Mandelbulb3D to Rhino and 3D Printed
Alexandra Goulds' MIXPINSKI4EX fractal
Alexandra Goulds’ MIXPINSKI4EX fractal
Michael Armfield's parametric exploration of the Amazing Surf Fractal
Michael Armfield’s parametric exploration of the Amazing Surf Fractal
20171102_184258.jpg
Michael Armfield’s parametric exploration of the Amazing Surf Fractal
Michael Armfield's parametric exploration of the Amazing Surf Fractal
Michael Armfield’s parametric exploration of the Amazing Surf Fractal
Henry McNeil's Fibreglass modelling of the Apollonian Gasket.
Henry McNeil’s Fibreglass modelling of the Apollonian Gasket.
Henry McNeil's 3D printed support for his fractal
Henry McNeil’s 3D printed support for his fractal
Henry McNeil's 3D printed fractal imported from Mandelbulb3d to Rhino
Henry McNeil’s 3D printed fractal imported from Mandelbulb3d to Rhino
Henry McNeil's Fibreglass prototype from Ping-Pong and tennis balls
Henry McNeil’s Fibreglass Fractal prototype from Ping-Pong and tennis balls
Ed Mack's laser-cut Fractal Dodecahedron.
Ed Mack’s laser-cut Fractal Dodecahedron.

 

Ben Street's auxetic double curved paper models
Ben Street’s auxetic double curved paper models
Ben Street's single curved paper models
Ben Street’s single curved paper models
Lewis Toghill's composite shells with Jesmonite, plaster, wax and fibre glass
Lewis Toghill’s composite shells with Jesmonite, plaster, wax and fibre glass

20171109_114548Alexandra Goulds' flexible timber node

Alexandra Goulds' flexible timber node
Alexandra Goulds’ flexible timber node
Manveer Sembi's paper cutting for double curved paper sphere
Manveer Sembi’s paper cutting for double curved paper sphere
James Marr's single curved wood node with rotational geometry for subdivided mesh geometry
James Marr’s single curved wood node with rotational geometry for subdivided mesh geometry
Nick Leung's 3D prints of the different recursive steps of a space-filling curve
Nick Leung’s 3D prints of the different recursive steps of a space-filling curve

 

Rebecca Cooper's Fractal truss study on parametric structural analysis tool Karamba3D
Rebecca Cooper’s Fractal truss study on parametric structural analysis tool Karamba3D
Manon Vajou's burnt polypropelene studies
Manon Vajou’s burnt polypropelene studies

20171026_154920